Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes.

Lomize AL, Pogozheva ID, Mosberg HI.

J Chem Inf Model. 2011 Apr 25;51(4):930-46. doi: 10.1021/ci200020k.

2.

Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects.

Lomize AL, Pogozheva ID, Mosberg HI.

J Chem Inf Model. 2011 Apr 25;51(4):918-29. doi: 10.1021/ci2000192.

3.

OPM database and PPM web server: resources for positioning of proteins in membranes.

Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL.

Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6. doi: 10.1093/nar/gkr703.

4.

The role of hydrophobic interactions in positioning of peripheral proteins in membranes.

Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI.

BMC Struct Biol. 2007 Jun 29;7:44.

5.

Life at the border: adaptation of proteins to anisotropic membrane environment.

Pogozheva ID, Mosberg HI, Lomize AL.

Protein Sci. 2014 Sep;23(9):1165-96. doi: 10.1002/pro.2508. Review.

6.

Positioning of proteins in membranes: a computational approach.

Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI.

Protein Sci. 2006 Jun;15(6):1318-33.

7.

Solvation models and computational prediction of orientations of peptides and proteins in membranes.

Lomize AL, Pogozheva ID.

Methods Mol Biol. 2013;1063:125-42. doi: 10.1007/978-1-62703-583-5_7.

PMID:
23975775
8.

Continuum electrostatic approach for evaluating positions and interactions of proteins in a bilayer membrane.

Supunyabut C, Fuklang S, Sompornpisut P.

J Mol Graph Model. 2015 Jun;59:81-91. doi: 10.1016/j.jmgm.2015.04.003.

PMID:
25912455
9.

Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model.

Bordner AJ, Zorman B, Abagyan R.

J Comput Aided Mol Des. 2011 Oct;25(10):895-911. doi: 10.1007/s10822-011-9470-9.

10.

The importance of membrane defects-lessons from simulations.

Bennett WF, Tieleman DP.

Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729.

PMID:
24892900
11.

Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.

Cao Y, Xiang TX, Anderson BD.

Mol Pharm. 2008 May-Jun;5(3):371-88. doi: 10.1021/mp700100n.

PMID:
18355031
12.

Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.

Kessel A, Haliloglu T, Ben-Tal N.

Biophys J. 2003 Dec;85(6):3687-95. Erratum in: Biophys J. 2004 Jan;86(1 Pt 1):662.

13.

A comparative study on the ability of two implicit solvent lipid models to predict transmembrane helix tilt angles.

Frank A, Andricioaei I.

J Membr Biol. 2011 Jan;239(1-2):57-62. doi: 10.1007/s00232-010-9325-7.

14.

A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation.

Efremov RG, Nolde DE, Vergoten G, Arseniev AS.

Biophys J. 1999 May;76(5):2448-59.

15.

Structural adaptations of proteins to different biological membranes.

Pogozheva ID, Tristram-Nagle S, Mosberg HI, Lomize AL.

Biochim Biophys Acta. 2013 Nov;1828(11):2592-608. doi: 10.1016/j.bbamem.2013.06.023.

16.

A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.

Efremov RG, Nolde DE, Vergoten G, Arseniev AS.

Biophys J. 1999 May;76(5):2460-71.

17.
18.
19.

An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers.

Tejwani RW, Davis ME, Anderson BD, Stouch TR.

Mol Pharm. 2011 Dec 5;8(6):2204-15. doi: 10.1021/mp2000204.

PMID:
21988564
20.

Solvation of transmembrane proteins by isotropic membrane mimetics: a molecular dynamics study.

Mottamal M, Shen S, Guembe C, Krilov G.

J Phys Chem B. 2007 Sep 27;111(38):11285-96.

PMID:
17784746

Supplemental Content

Support Center