Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Conformational dynamics of the molecular chaperone Hsp90.

Krukenberg KA, Street TO, Lavery LA, Agard DA.

Q Rev Biophys. 2011 May;44(2):229-55. doi: 10.1017/S0033583510000314. Review.

2.

pH-dependent conformational changes in bacterial Hsp90 reveal a Grp94-like conformation at pH 6 that is highly active in suppression of citrate synthase aggregation.

Krukenberg KA, Southworth DR, Street TO, Agard DA.

J Mol Biol. 2009 Jul 10;390(2):278-91. doi: 10.1016/j.jmb.2009.04.080.

3.

The 'active life' of Hsp90 complexes.

Prodromou C.

Biochim Biophys Acta. 2012 Mar;1823(3):614-23. doi: 10.1016/j.bbamcr.2011.07.020. Review.

4.

The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.

Cunningham CN, Southworth DR, Krukenberg KA, Agard DA.

Protein Sci. 2012 Aug;21(8):1162-71. doi: 10.1002/pro.2103.

5.

Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone.

Street TO, Lavery LA, Agard DA.

Mol Cell. 2011 Apr 8;42(1):96-105. doi: 10.1016/j.molcel.2011.01.029.

6.

Artificial accelerators of the molecular chaperone Hsp90 facilitate rate-limiting conformational transitions.

Zierer BK, Weiwad M, Rübbelke M, Freiburger L, Fischer G, Lorenz OR, Sattler M, Richter K, Buchner J.

Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12257-62. doi: 10.1002/anie.201406578.

PMID:
25244159
7.

Grp94, the endoplasmic reticulum Hsp90, has a similar solution conformation to cytosolic Hsp90 in the absence of nucleotide.

Krukenberg KA, Böttcher UM, Southworth DR, Agard DA.

Protein Sci. 2009 Sep;18(9):1815-27. doi: 10.1002/pro.191.

8.

Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine.

Graf C, Stankiewicz M, Kramer G, Mayer MP.

EMBO J. 2009 Mar 4;28(5):602-13. doi: 10.1038/emboj.2008.306.

9.

Molecular and thermodynamic insights into the conformational transitions of Hsp90.

Simunovic M, Voth GA.

Biophys J. 2012 Jul 18;103(2):284-92. doi: 10.1016/j.bpj.2012.06.018.

10.

The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.

Li J, Soroka J, Buchner J.

Biochim Biophys Acta. 2012 Mar;1823(3):624-35. doi: 10.1016/j.bbamcr.2011.09.003. Review.

11.

Species-dependent ensembles of conserved conformational states define the Hsp90 chaperone ATPase cycle.

Southworth DR, Agard DA.

Mol Cell. 2008 Dec 5;32(5):631-40. doi: 10.1016/j.molcel.2008.10.024.

12.

Structure, function and regulation of the hsp90 machinery.

Li J, Buchner J.

Biomed J. 2013 May-Jun;36(3):106-17. doi: 10.4103/2319-4170.113230. Review.

13.

Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full-length dimer.

Morra G, Verkhivker G, Colombo G.

PLoS Comput Biol. 2009 Mar;5(3):e1000323. doi: 10.1371/journal.pcbi.1000323.

14.

Heat-shock protein 90, a chaperone for folding and regulation.

Picard D.

Cell Mol Life Sci. 2002 Oct;59(10):1640-8. Review.

PMID:
12475174
15.

Hsp90 and co-chaperones twist the functions of diverse client proteins.

Zuehlke A, Johnson JL.

Biopolymers. 2010 Mar;93(3):211-7. doi: 10.1002/bip.21292. Review.

16.

Hsp90 structure and function studied by NMR spectroscopy.

Didenko T, Duarte AM, Karagöz GE, Rüdiger SG.

Biochim Biophys Acta. 2012 Mar;1823(3):636-47. doi: 10.1016/j.bbamcr.2011.11.009. Review.

17.

Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.

Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C.

J Biol Chem. 2004 Dec 10;279(50):51989-98.

18.

Intrinsic inhibition of the Hsp90 ATPase activity.

Richter K, Moser S, Hagn F, Friedrich R, Hainzl O, Heller M, Schlee S, Kessler H, Reinstein J, Buchner J.

J Biol Chem. 2006 Apr 21;281(16):11301-11.

19.

Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90.

Krukenberg KA, Förster F, Rice LM, Sali A, Agard DA.

Structure. 2008 May;16(5):755-65. doi: 10.1016/j.str.2008.01.021.

20.

ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.

Panaretou B, Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH.

EMBO J. 1998 Aug 17;17(16):4829-36.

Supplemental Content

Support Center