Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation.

Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B.

Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570.

2.

iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells.

Fröhlich T, Kösters M, Graf A, Wolf E, Kobolak J, Brochard V, Dinnyés A, Jouneau A, Arnold GJ.

J Proteomics. 2013 Sep 2;90:38-51. doi: 10.1016/j.jprot.2013.03.015. Epub 2013 Apr 18.

PMID:
23603003
3.

Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells.

Choi HS, Kim WT, Kim H, Kim JJ, Ko JY, Lee SW, Jang YJ, Kim SJ, Lee MJ, Jung HS, Kzhyshkowska J, Um SJ, Lee MY, Lee SH, Kim CH, Ryu CJ.

Stem Cells Dev. 2011 Apr;20(4):609-20. doi: 10.1089/scd.2010.0265. Epub 2011 Jan 16.

PMID:
21083500
4.

Large scale phosphoproteome profiles comprehensive features of mouse embryonic stem cells.

Li QR, Xing XB, Chen TT, Li RX, Dai J, Sheng QH, Xin SM, Zhu LL, Jin Y, Pei G, Kang JH, Li YX, Zeng R.

Mol Cell Proteomics. 2011 Apr;10(4):M110.001750. doi: 10.1074/mcp.M110.001750. Epub 2010 Dec 13.

5.

Phosphorylation dynamics during early differentiation of human embryonic stem cells.

Van Hoof D, Muñoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J.

Cell Stem Cell. 2009 Aug 7;5(2):214-26. doi: 10.1016/j.stem.2009.05.021.

6.

Quantitative proteome and phosphoproteome analysis of human pluripotent stem cells.

Muñoz J, Heck AJ.

Methods Mol Biol. 2011;767:297-312. doi: 10.1007/978-1-61779-201-4_22.

PMID:
21822884
7.
8.

TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner.

Seki Y, Kurisaki A, Watanabe-Susaki K, Nakajima Y, Nakanishi M, Arai Y, Shiota K, Sugino H, Asashima M.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10926-31. doi: 10.1073/pnas.0907601107. Epub 2010 May 27. Erratum in: Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13556.

9.

Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation.

Zhang ZN, Chung SK, Xu Z, Xu Y.

Stem Cells. 2014 Jan;32(1):157-65. doi: 10.1002/stem.1532.

10.

Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells.

Won KJ, Xu Z, Zhang X, Whitaker JW, Shoemaker R, Ren B, Xu Y, Wang W.

Nucleic Acids Res. 2012 Sep 1;40(17):8199-209. Epub 2012 Jun 22.

12.

SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells.

Kidder BL, Palmer S, Knott JG.

Stem Cells. 2009 Feb;27(2):317-28. doi: 10.1634/stemcells.2008-0710.

13.

Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells.

Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, Kassem M, Blagoev B.

Mol Cell Proteomics. 2009 May;8(5):959-70. doi: 10.1074/mcp.M800287-MCP200. Epub 2009 Jan 17.

14.

esBAF safeguards Stat3 binding to maintain pluripotency.

Novershtern N, Hanna JH.

Nat Cell Biol. 2011 Aug 1;13(8):886-8. doi: 10.1038/ncb2311.

PMID:
21808242
15.

Four recombinant pluripotency transcriptional factors containing a protein transduction domain maintained the in vitro pluripotency of chicken embryonic stem cells.

Yu M, Lian S, Han H, Yu K, Li G, Lian Z, Li N.

Sci China Life Sci. 2013 Jan;56(1):40-50. doi: 10.1007/s11427-012-4426-4. Epub 2013 Jan 12.

PMID:
23314866
16.

A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells.

Yang J, Gao C, Chai L, Ma Y.

PLoS One. 2010 May 21;5(5):e10766. doi: 10.1371/journal.pone.0010766.

17.

Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling.

Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D'Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ.

Blood. 2007 Dec 1;110(12):4111-9. Epub 2007 Aug 29.

18.

Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells.

Westfall SD, Sachdev S, Das P, Hearne LB, Hannink M, Roberts RM, Ezashi T.

Stem Cells Dev. 2008 Oct;17(5):869-81. doi: 10.1089/scd.2007.0240.

19.

Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation.

Krejcí J, Uhlírová R, Galiová G, Kozubek S, Smigová J, Bártová E.

J Cell Physiol. 2009 Jun;219(3):677-87. doi: 10.1002/jcp.21714.

PMID:
19202556
20.

Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency.

Hawkins RD, Hon GC, Yang C, Antosiewicz-Bourget JE, Lee LK, Ngo QM, Klugman S, Ching KA, Edsall LE, Ye Z, Kuan S, Yu P, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Ren B.

Cell Res. 2011 Oct;21(10):1393-409. doi: 10.1038/cr.2011.146. Epub 2011 Aug 30.

Supplemental Content

Support Center