Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Parallel wavefront optimization method for focusing light through random scattering media.

Cui M.

Opt Lett. 2011 Mar 15;36(6):870-2. doi: 10.1364/OL.36.000870.

PMID:
21403712
2.

Improving photoacoustic-guided optical focusing in scattering media by spectrally filtered detection.

Chaigne T, Gateau J, Katz O, Boccara C, Gigan S, Bossy E.

Opt Lett. 2014 Oct 15;39(20):6054-7. doi: 10.1364/OL.39.006054.

PMID:
25361154
3.

Ultrasonically encoded wavefront shaping for focusing into random media.

Tay JW, Lai P, Suzuki Y, Wang LV.

Sci Rep. 2014 Jan 29;4:3918. doi: 10.1038/srep03918.

4.

Polarization control of multiply scattered light through random media by wavefront shaping.

Guan Y, Katz O, Small E, Zhou J, Silberberg Y.

Opt Lett. 2012 Nov 15;37(22):4663-5.

PMID:
23164872
5.

Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light.

Ruan H, Jang M, Yang C.

Nat Commun. 2015 Nov 24;6:8968. doi: 10.1038/ncomms9968.

6.
7.

Active spectral filtering through turbid media.

Park JH, Park C, Yu H, Cho YH, Park Y.

Opt Lett. 2012 Aug 1;37(15):3261-3. doi: 10.1364/OL.37.003261.

PMID:
22859152
8.

High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing.

Tao X, Bodington D, Reinig M, Kubby J.

Opt Express. 2015 Jun 1;23(11):14168-87. doi: 10.1364/OE.23.014168.

PMID:
26072785
9.

Genetic algorithm optimization for focusing through turbid media in noisy environments.

Conkey DB, Brown AN, Caravaca-Aguirre AM, Piestun R.

Opt Express. 2012 Feb 27;20(5):4840-9. doi: 10.1364/OE.20.004840.

PMID:
22418290
10.

Optimization of focusing through scattering media using the continuous sequential algorithm.

Thompson JV, Hokr BH, Yakovlev VV.

J Mod Opt. 2016;63(1):80-84. Epub 2015 Aug 11.

11.

Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation.

Liu Y, Ma C, Shen Y, Shi J, Wang LV.

Optica. 2017 Feb;4(2):280-288. doi: 10.1364/OPTICA.4.000280. Epub 2017 Feb 20.

12.
13.

Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media.

Lai P, Wang L, Tay JW, Wang LV.

Nat Photonics. 2015 Feb;9(2):126-132.

14.

Multiple scattering of polarized light: influence of absorption.

Hohmann A, Voit F, Schäfer J, Kienle A.

Phys Med Biol. 2014 Jun 7;59(11):2583-97. doi: 10.1088/0031-9155/59/11/2583. Epub 2014 May 1.

PMID:
24785964
15.

Focusing on moving targets through scattering samples.

Zhou EH, Ruan H, Yang C, Judkewitz B.

Optica. 2014;1(4):227-232.

16.

A self-adaptive method for creating high efficiency communication channels through random scattering media.

Hao X, Martin-Rouault L, Cui M.

Sci Rep. 2014 Jul 29;4:5874. doi: 10.1038/srep05874.

17.

An inverse light scattering technique for morphological characterization of irregular particles based on the Gaussian-random-sphere model.

Hajihashemi MR, Jiang H.

J Opt Soc Am A Opt Image Sci Vis. 2012 Jun 1;29(6):1124-31. doi: 10.1364/JOSAA.29.001124.

18.

Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light.

Liu Y, Lai P, Ma C, Xu X, Grabar AA, Wang LV.

Nat Commun. 2015 Jan 5;6:5904. doi: 10.1038/ncomms6904.

19.

Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique.

Jang M, Ruan H, Judkewitz B, Yang C.

Opt Express. 2014 Mar 10;22(5):5787-807. doi: 10.1364/OE.22.005787.

20.

Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback.

Deán-Ben XL, Estrada H, Razansky D.

Opt Lett. 2015 Feb 15;40(4):443-6. doi: 10.1364/OL.40.000443.

PMID:
25680120

Supplemental Content

Support Center