Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors.

Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, Ellwood-Yen K, Gerald WL, Sander C, Sawyers CL.

PLoS One. 2011 Mar 4;6(3):e17449. doi: 10.1371/journal.pone.0017449.

2.

Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model.

Nandana S, Ellwood-Yen K, Sawyers C, Wills M, Weidow B, Case T, Vasioukhin V, Matusik R.

Prostate. 2010 May 1;70(6):591-600. doi: 10.1002/pros.21093.

3.

Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.

Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J, Thompson TC.

Mol Cancer Res. 2012 Feb;10(2):218-29. doi: 10.1158/1541-7786.MCR-11-0451. Epub 2011 Dec 5.

4.

The pace of prostatic intraepithelial neoplasia development is determined by the timing of Pten tumor suppressor gene excision.

Luchman HA, Benediktsson H, Villemaire ML, Peterson AC, Jirik FR.

PLoS One. 2008;3(12):e3940. doi: 10.1371/journal.pone.0003940. Epub 2008 Dec 15.

5.

mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.

Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR, Loda M, Lane HA, Sellers WR.

Nat Med. 2004 Jun;10(6):594-601. Epub 2004 May 23.

PMID:
15156201
6.

Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice.

Kladney RD, Cardiff RD, Kwiatkowski DJ, Chiang GG, Weber JD, Arbeit JM, Lu ZH.

Cancer Res. 2010 Nov 1;70(21):8937-47. doi: 10.1158/0008-5472.CAN-10-1646. Epub 2010 Oct 12.

7.

Limited significance of activated Akt-mammalian target of rapamycin signaling pathway in prostate cancer progression.

Ko YH, Miyake H, Behnsawy HM, Cheon J, Fujisawa M.

Urol Int. 2014;93(2):146-51. doi: 10.1159/000356262. Epub 2014 Feb 20.

PMID:
24556942
8.

MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.

Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL, Bethel C, Lotz MT, Yegnasubramanian S, Nelson WG, Dang CV, Xu M, Anele U, Koh CM, Bieberich CJ, De Marzo AM.

PLoS One. 2010 Feb 25;5(2):e9427. doi: 10.1371/journal.pone.0009427.

9.

PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response.

Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE, Khwaja A.

Leukemia. 2013 Mar;27(3):650-60. doi: 10.1038/leu.2012.285. Epub 2012 Oct 5.

PMID:
23038273
10.

A constitutively activated form of the p110beta isoform of PI3-kinase induces prostatic intraepithelial neoplasia in mice.

Lee SH, Poulogiannis G, Pyne S, Jia S, Zou L, Signoretti S, Loda M, Cantley LC, Roberts TM.

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11002-7. doi: 10.1073/pnas.1005642107. Epub 2010 Jun 1.

11.

Transgenic overexpression of PKCε in the mouse prostate induces preneoplastic lesions.

Benavides F, Blando J, Perez CJ, Garg R, Conti CJ, DiGiovanni J, Kazanietz MG.

Cell Cycle. 2011 Jan 15;10(2):268-77. Epub 2011 Jan 15.

12.

Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model.

Majumder PK, Yeh JJ, George DJ, Febbo PG, Kum J, Xue Q, Bikoff R, Ma H, Kantoff PW, Golub TR, Loda M, Sellers WR.

Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7841-6. Epub 2003 Jun 10.

13.

Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis.

Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J.

Oncogene. 2009 Sep 17;28(37):3307-19. doi: 10.1038/onc.2009.181. Epub 2009 Jul 13.

14.

Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells.

Estrada AC, Syrovets T, Pitterle K, Lunov O, Büchele B, Schimana-Pfeifer J, Schmidt T, Morad SA, Simmet T.

Mol Pharmacol. 2010 Mar;77(3):378-87. doi: 10.1124/mol.109.060475. Epub 2009 Dec 16.

15.

AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression.

Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK.

J Biol Chem. 2004 Jan 23;279(4):2737-46. Epub 2003 Oct 23.

16.

Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer.

Gao N, Zhang Z, Jiang BH, Shi X.

Biochem Biophys Res Commun. 2003 Oct 31;310(4):1124-32.

PMID:
14559232
17.

Myc-driven murine prostate cancer shares molecular features with human prostate tumors.

Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R, Thomas GV, Sawyers CL.

Cancer Cell. 2003 Sep;4(3):223-38. Erratum in: Cancer Cell. 2005 Dec;8(6):485.

18.

In vivo activity of combined PI3K/mTOR and MEK inhibition in a Kras(G12D);Pten deletion mouse model of ovarian cancer.

Kinross KM, Brown DV, Kleinschmidt M, Jackson S, Christensen J, Cullinane C, Hicks RJ, Johnstone RW, McArthur GA.

Mol Cancer Ther. 2011 Aug;10(8):1440-9. doi: 10.1158/1535-7163.MCT-11-0240. Epub 2011 Jun 1.

19.

Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells.

Zito CR, Jilaveanu LB, Anagnostou V, Rimm D, Bepler G, Maira SM, Hackl W, Camp R, Kluger HM, Chao HH.

PLoS One. 2012;7(2):e31331. doi: 10.1371/journal.pone.0031331. Epub 2012 Feb 15.

20.

Embelin inhibits growth and induces apoptosis through the suppression of Akt/mTOR/S6K1 signaling cascades.

Kim SW, Kim SM, Bae H, Nam D, Lee JH, Lee SG, Shim BS, Kim SH, Ahn KS, Choi SH, Sethi G, Ahn KS.

Prostate. 2013 Feb 15;73(3):296-305. doi: 10.1002/pros.22574. Epub 2012 Aug 9.

PMID:
22887478

Supplemental Content

Support Center