Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.

Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms.

Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR.

Appl Environ Microbiol. 2011 May;77(9):2882-6. doi: 10.1128/AEM.02642-10. Epub 2011 Mar 4.

2.

Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.

Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR.

MBio. 2010 May 25;1(2). pii: e00103-10. doi: 10.1128/mBio.00103-10.

3.

Sulfide-driven microbial electrosynthesis.

Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K.

Environ Sci Technol. 2013 Jan 2;47(1):568-73. doi: 10.1021/es303837j. Epub 2012 Dec 19.

PMID:
23252645
4.

Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.

Ueki T, Nevin KP, Woodard TL, Lovley DR.

MBio. 2014 Oct 21;5(5):e01636-14. doi: 10.1128/mBio.01636-14.

5.

Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells.

Nie H, Zhang T, Cui M, Lu H, Lovley DR, Russell TP.

Phys Chem Chem Phys. 2013 Sep 14;15(34):14290-4. doi: 10.1039/c3cp52697f. Epub 2013 Jul 23.

PMID:
23881181
6.

A shift in the current: new applications and concepts for microbe-electrode electron exchange.

Lovley DR, Nevin KP.

Curr Opin Biotechnol. 2011 Jun;22(3):441-8. doi: 10.1016/j.copbio.2011.01.009. Epub 2011 Feb 16. Review.

PMID:
21333524
7.

Powering microbes with electricity: direct electron transfer from electrodes to microbes.

Lovley DR.

Environ Microbiol Rep. 2011 Feb;3(1):27-35. doi: 10.1111/j.1758-2229.2010.00211.x. Epub 2010 Sep 16.

PMID:
23761228
8.

Clostridium ljungdahlii represents a microbial production platform based on syngas.

Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P.

Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13087-92. doi: 10.1073/pnas.1004716107. Epub 2010 Jul 2. Erratum in: Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15305.

9.

Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity.

Lovley DR, Nevin KP.

Curr Opin Biotechnol. 2013 Jun;24(3):385-90. doi: 10.1016/j.copbio.2013.02.012. Epub 2013 Mar 4. Review.

PMID:
23465755
10.

The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens.

Poehlein A, Cebulla M, Ilg MM, Bengelsdorf FR, Schiel-Bengelsdorf B, Whited G, Andreesen JR, Gottschalk G, Daniel R, Dürre P.

MBio. 2015 Sep 8;6(5):e01168-15. doi: 10.1128/mBio.01168-15.

11.

Selective enhancement of autotrophic acetate production with genetically modified Acetobacterium woodii.

Straub M, Demler M, Weuster-Botz D, Dürre P.

J Biotechnol. 2014 May 20;178:67-72. doi: 10.1016/j.jbiotec.2014.03.005. Epub 2014 Mar 15.

PMID:
24637370
12.

Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.

Bajracharya S, ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJ, Strik DP, Pant D.

Bioresour Technol. 2015 Nov;195:14-24. doi: 10.1016/j.biortech.2015.05.081. Epub 2015 May 28.

PMID:
26066971
13.

Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes.

Marshall CW, Ross DE, Fichot EB, Norman RS, May HD.

Environ Sci Technol. 2013 Jun 4;47(11):6023-9. doi: 10.1021/es400341b. Epub 2013 May 16.

PMID:
23676111
14.

Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation.

Groher A, Weuster-Botz D.

J Biotechnol. 2016 Jun 20;228:82-94. doi: 10.1016/j.jbiotec.2016.04.032. Epub 2016 Apr 20.

PMID:
27107467
15.

Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2.

Huang H, Wang S, Moll J, Thauer RK.

J Bacteriol. 2012 Jul;194(14):3689-99. doi: 10.1128/JB.00385-12. Epub 2012 May 11.

16.

Carbon isotope fractionation of 11 acetogenic strains grown on H2 and CO2.

Blaser MB, Dreisbach LK, Conrad R.

Appl Environ Microbiol. 2013 Mar;79(6):1787-94. doi: 10.1128/AEM.03203-12. Epub 2012 Dec 28.

17.

Tolerance and metabolic response of acetogenic bacteria toward oxygen.

Karnholz A, Küsel K, Gössner A, Schramm A, Drake HL.

Appl Environ Microbiol. 2002 Feb;68(2):1005-9.

18.
19.

Genome-guided analysis of transformation efficiency and carbon dioxide assimilation by Moorella thermoacetica Y72.

Tsukahara K, Kita A, Nakashimada Y, Hoshino T, Murakami K.

Gene. 2014 Feb 10;535(2):150-5. doi: 10.1016/j.gene.2013.11.045. Epub 2013 Dec 6.

PMID:
24316126
20.

Microbes as electrochemical CO2 conversion catalysts.

Song J, Kim Y, Lim M, Lee H, Lee JI, Shin W.

ChemSusChem. 2011 May 23;4(5):587-90. doi: 10.1002/cssc.201100107. Epub 2011 Apr 28. No abstract available.

PMID:
21538918
Items per page

Supplemental Content

Write to the Help Desk