Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 243

1.

Biomechanics of the tympanic membrane.

Volandri G, Di Puccio F, Forte P, Carmignani C.

J Biomech. 2011 Apr 29;44(7):1219-36. doi: 10.1016/j.jbiomech.2010.12.023. Epub 2011 Mar 3. Review.

PMID:
21376326
2.

Viscoelastic properties of human tympanic membrane.

Cheng T, Dai C, Gan RZ.

Ann Biomed Eng. 2007 Feb;35(2):305-14. Epub 2006 Dec 8.

PMID:
17160465
3.

Modeling of the human middle ear using the finite-element method.

Koike T, Wada H, Kobayashi T.

J Acoust Soc Am. 2002 Mar;111(3):1306-17.

PMID:
11931308
4.

Three-dimensional finite element modeling of human ear for sound transmission.

Gan RZ, Feng B, Sun Q.

Ann Biomed Eng. 2004 Jun;32(6):847-59.

PMID:
15255215
5.

Acoustic responses of the human middle ear.

Voss SE, Rosowski JJ, Merchant SN, Peake WT.

Hear Res. 2000 Dec;150(1-2):43-69.

PMID:
11077192
6.

Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.

Chen SI, Lee MH, Yao CM, Chen PR, Chou YF, Liu TC, Song YL, Lee CF.

Kaohsiung J Med Sci. 2013 Mar;29(3):133-9. doi: 10.1016/j.kjms.2012.08.023. Epub 2012 Nov 22.

7.

Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis.

Lee CF, Hsu LP, Chen PR, Chou YF, Chen JH, Liu TC.

Audiol Neurootol. 2006;11(6):380-8. Epub 2006 Sep 21.

PMID:
16988502
8.

Modeling the eardrum as a string with distributed force.

Goll E, Dalhoff E.

J Acoust Soc Am. 2011 Sep;130(3):1452-62. doi: 10.1121/1.3613934.

PMID:
21895086
9.

A biomechanical ear model to evaluate middle-ear reconstruction.

Mojallal H, Stieve M, Krueger I, Behrens P, Mueller PP, Lenarz T.

Int J Audiol. 2009 Dec;48(12):876-84. doi: 10.3109/14992020903085735.

PMID:
20017684
10.

Effects of middle ear pressure changes on umbo vibration.

Gyo K, Goode RL.

Auris Nasus Larynx. 1987;14(3):131-7.

PMID:
3451732
11.
12.

Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study.

Aernouts J, Soons JA, Dirckx JJ.

Hear Res. 2010 May;263(1-2):177-82. doi: 10.1016/j.heares.2009.09.007. Epub 2009 Sep 22.

PMID:
19778595
13.

Viscoelastic properties of gerbil tympanic membrane at very low frequencies.

Aernouts J, Dirckx JJ.

J Biomech. 2012 Apr 5;45(6):919-24. doi: 10.1016/j.jbiomech.2012.01.023. Epub 2012 Feb 10.

PMID:
22326125
14.

Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.

Dalhoff E, Turcanu D, Gummer AW.

Hear Res. 2011 Oct;280(1-2):86-99. doi: 10.1016/j.heares.2011.04.015. Epub 2011 May 23.

PMID:
21624450
15.

Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.

Gan RZ, Sun Q, Feng B, Wood MW.

Med Eng Phys. 2006 Jun;28(5):395-404. Epub 2005 Aug 24.

PMID:
16122964
16.

Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear.

Wang X, Cheng T, Gan RZ.

J Acoust Soc Am. 2007 Aug;122(2):906-17.

PMID:
17672640
17.

Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.

Puria S, Allen JB.

J Acoust Soc Am. 1998 Dec;104(6):3463-81.

PMID:
9857506
18.

Effects of pars flaccida on sound conduction in ears of Mongolian gerbil: acoustic and anatomical measurements.

Teoh SW, Flandermeyer DT, Rosowski JJ.

Hear Res. 1997 Apr;106(1-2):39-65.

PMID:
9112106
19.

Middle-ear dynamics before and after ossicular replacement.

Ferris P, Prendergast PJ.

J Biomech. 2000 May;33(5):581-90.

PMID:
10708779
20.

[Computerized 3-D model to study biomechanics of the middle ear using the finite element method].

Gil-Carcedo E, Pérez López B, Vallejo LA, Gil-Carcedo LM, Montoya F.

Acta Otorrinolaringol Esp. 2002 Oct;53(8):527-37. Spanish.

Supplemental Content

Support Center