Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 181


Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2.

Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, Uwamahoro N, Rupasinghe T, Tull DL, McConville M, Beaurepaire C, Nantel A, Lithgow T, Mitchell AP, Traven A.

Mol Microbiol. 2011 Feb;79(4):968-89. doi: 10.1111/j.1365-2958.2010.07503.x. Epub 2010 Dec 30.


Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence.

Qu Y, Jelicic B, Pettolino F, Perry A, Lo TL, Hewitt VL, Bantun F, Beilharz TH, Peleg AY, Lithgow T, Djordjevic JT, Traven A.

Eukaryot Cell. 2012 Apr;11(4):532-44. doi: 10.1128/EC.05292-11. Epub 2012 Jan 27.


Paradoxical growth of Candida albicans in the presence of caspofungin is associated with multiple cell wall rearrangements and decreased virulence.

Rueda C, Cuenca-Estrella M, Zaragoza O.

Antimicrob Agents Chemother. 2014;58(2):1071-83. doi: 10.1128/AAC.00946-13. Epub 2013 Dec 2.


Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo.

Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA, Munro CA.

Antimicrob Agents Chemother. 2012 Jan;56(1):208-17. doi: 10.1128/AAC.00683-11. Epub 2011 Oct 10.


Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin.

Badrane H, Nguyen MH, Blankenship JR, Cheng S, Hao B, Mitchell AP, Clancy CJ.

Antimicrob Agents Chemother. 2012 Sep;56(9):4614-24. doi: 10.1128/AAC.00112-12. Epub 2012 Jun 11.


Pga26 mediates filamentation and biofilm formation and is required for virulence in Candida albicans.

Laforet L, Moreno I, Sánchez-Fresneda R, Martínez-Esparza M, Martínez JP, Argüelles JC, de Groot PW, Valentín-Gomez E.

FEMS Yeast Res. 2011 Aug;11(5):389-97. doi: 10.1111/j.1567-1364.2011.00727.x. Epub 2011 Apr 14.


Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae.

Zhang J, Silao FG, Bigol UG, Bungay AA, Nicolas MG, Heitman J, Chen YL.

PLoS One. 2012;7(8):e44192. doi: 10.1371/journal.pone.0044192. Epub 2012 Aug 31.


Mitochondria influence CDR1 efflux pump activity, Hog1-mediated oxidative stress pathway, iron homeostasis, and ergosterol levels in Candida albicans.

Thomas E, Roman E, Claypool S, Manzoor N, Pla J, Panwar SL.

Antimicrob Agents Chemother. 2013 Nov;57(11):5580-99. doi: 10.1128/AAC.00889-13. Epub 2013 Aug 26.


Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1.

Gregori C, Glaser W, Frohner IE, Reinoso-Martín C, Rupp S, Schüller C, Kuchler K.

Eukaryot Cell. 2011 Dec;10(12):1694-704. doi: 10.1128/EC.05187-11. Epub 2011 Oct 28.


Requirement for Candida albicans Sun41 in biofilm formation and virulence.

Norice CT, Smith FJ Jr, Solis N, Filler SG, Mitchell AP.

Eukaryot Cell. 2007 Nov;6(11):2046-55. Epub 2007 Sep 14.


Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity.

Plaine A, Walker L, Da Costa G, Mora-Montes HM, McKinnon A, Gow NA, Gaillardin C, Munro CA, Richard ML.

Fungal Genet Biol. 2008 Oct;45(10):1404-14. doi: 10.1016/j.fgb.2008.08.003. Epub 2008 Aug 15.


Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

Verma-Gaur J, Qu Y, Harrison PF, Lo TL, Quenault T, Dagley MJ, Bellousoff M, Powell DR, Beilharz TH, Traven A.

PLoS Genet. 2015 Oct 16;11(10):e1005590. doi: 10.1371/journal.pgen.1005590. eCollection 2015 Oct.


Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

Yu Q, Zhang B, Li J, Zhang B, Wang H, Li M.

Free Radic Biol Med. 2016 Oct;99:572-583. doi: 10.1016/j.freeradbiomed.2016.09.014. Epub 2016 Sep 17.


The Cek1‑mediated MAP kinase pathway regulates exposure of α‑1,2 and β‑1,2‑mannosides in the cell wall of Candida albicans modulating immune recognition.

Román E, Correia I, Salazin A, Fradin C, Jouault T, Poulain D, Liu FT, Pla J.

Virulence. 2016 Jul 3;7(5):558-77. doi: 10.1080/21505594.2016.1163458. Epub 2016 May 18.


Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans.

Adám C, Erdei E, Casado C, Kovács L, González A, Majoros L, Petrényi K, Bagossi P, Farkas I, Molnar M, Pócsi I, Ariño J, Dombrádi V.

Microbiology. 2012 May;158(Pt 5):1258-67. doi: 10.1099/mic.0.057075-0. Epub 2012 Feb 16.


Activation and alliance of regulatory pathways in C. albicans during mammalian infection.

Xu W, Solis NV, Ehrlich RL, Woolford CA, Filler SG, Mitchell AP.

PLoS Biol. 2015 Feb 18;13(2):e1002076. doi: 10.1371/journal.pbio.1002076. eCollection 2015 Feb.


Elevated chitin content reduces the susceptibility of Candida species to caspofungin.

Walker LA, Gow NA, Munro CA.

Antimicrob Agents Chemother. 2013 Jan;57(1):146-54. doi: 10.1128/AAC.01486-12. Epub 2012 Oct 22.


Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.

Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR.

Eukaryot Cell. 2011 Dec;10(12):1660-9. doi: 10.1128/EC.05126-11. Epub 2011 Jun 10.


Fitness and virulence costs of Candida albicans FKS1 hot spot mutations associated with echinocandin resistance.

Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS, Kontoyiannis DP.

J Infect Dis. 2011 Aug 15;204(4):626-35. doi: 10.1093/infdis/jir351.


Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin.

Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE.

PLoS Pathog. 2009 Jul;5(7):e1000532. doi: 10.1371/journal.ppat.1000532. Epub 2009 Jul 31.

Supplemental Content

Support Center