Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells.

Mankani MH, Afghani S, Franco J, Launey M, Marshall S, Marshall GW, Nissenson R, Lee J, Tomsia AP, Saiz E.

Tissue Eng Part A. 2011 Jun;17(11-12):1615-23. doi: 10.1089/ten.TEA.2010.0573. Epub 2011 Apr 2.

2.

Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate.

Kuznetsov SA, Huang KE, Marshall GW, Robey PG, Mankani MH.

Biomaterials. 2008 Nov;29(31):4211-6. doi: 10.1016/j.biomaterials.2008.07.013. Epub 2008 Aug 6.

3.

The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

Özdal-Kurt F, Tuğlu I, Vatansever HS, Tong S, Deliloğlu-Gürhan SI.

Biotech Histochem. 2015;90(7):516-28. doi: 10.3109/10520295.2014.983547. Epub 2015 May 21.

PMID:
25994048
4.

Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.

Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F.

J Biomater Appl. 2011 Nov;26(4):465-89. doi: 10.1177/0885328210372149. Epub 2010 Jun 21.

PMID:
20566654
5.

Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction.

Tour G, Wendel M, Tcacencu I.

J Tissue Eng Regen Med. 2014 Nov;8(11):841-9. doi: 10.1002/term.1574. Epub 2012 Jul 10.

PMID:
22782939
6.

Porous zirconia/hydroxyapatite scaffolds for bone reconstruction.

An SH, Matsumoto T, Miyajima H, Nakahira A, Kim KH, Imazato S.

Dent Mater. 2012 Dec;28(12):1221-31. doi: 10.1016/j.dental.2012.09.001. Epub 2012 Sep 25.

PMID:
23018082
7.

Creation of new bone by the percutaneous injection of human bone marrow stromal cell and HA/TCP suspensions.

Mankani MH, Kuznetsov SA, Marshall GW, Robey PG.

Tissue Eng Part A. 2008 Dec;14(12):1949-58. doi: 10.1089/ten.tea.2007.0348.

8.

Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.

Acta Biomater. 2011 Feb;7(2):809-20. doi: 10.1016/j.actbio.2010.09.010. Epub 2010 Sep 16.

PMID:
20849985
9.

Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.

Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.

Biomaterials. 2006 Dec;27(36):6123-37. Epub 2006 Aug 30.

PMID:
16945410
10.

Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow.

Zhang W, Walboomers XF, van Osch GJ, van den Dolder J, Jansen JA.

Tissue Eng Part A. 2008 Feb;14(2):285-94. doi: 10.1089/tea.2007.0146.

PMID:
18333781
11.

Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.

Oliveira JM, Silva SS, Malafaya PB, Rodrigues MT, Kotobuki N, Hirose M, Gomes ME, Mano JF, Ohgushi H, Reis RL.

J Biomed Mater Res A. 2009 Oct;91(1):175-86. doi: 10.1002/jbm.a.32213.

PMID:
18780358
12.

Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.

Chen KY, Chung CM, Chen YS, Bau DT, Yao CH.

J Tissue Eng Regen Med. 2013 Sep;7(9):708-19. doi: 10.1002/term.1461. Epub 2012 Mar 6.

PMID:
22392838
13.

Stromal cell-derived factor-1alpha-directed chemoattraction of transiently CXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds.

Thieme S, Ryser M, Gentsch M, Navratiel K, Brenner S, Stiehler M, Rölfing J, Gelinsky M, Rösen-Wolff A.

Tissue Eng Part C Methods. 2009 Dec;15(4):687-96. doi: 10.1089/ten.TEC.2008.0556.

PMID:
19260802
14.

Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells.

Villa MM, Wang L, Huang J, Rowe DW, Wei M.

J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):243-53. doi: 10.1002/jbm.b.33225. Epub 2014 Jun 7.

15.

Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.

Martins AM, Pham QP, Malafaya PB, Raphael RM, Kasper FK, Reis RL, Mikos AG.

Tissue Eng Part A. 2009 Aug;15(8):1953-63. doi: 10.1089/ten.tea.2008.0023.

PMID:
19327018
16.

Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.

Yang W, Both SK, van Osch GJ, Wang Y, Jansen JA, Yang F.

Acta Biomater. 2015 Feb;13:254-65. doi: 10.1016/j.actbio.2014.11.029. Epub 2014 Nov 20.

PMID:
25463490
17.
18.

Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.

Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Srouji S, Livne E, Reis RL, Neves NM.

J Tissue Eng Regen Med. 2012 Jan;6(1):21-8. doi: 10.1002/term.391. Epub 2011 Feb 10.

PMID:
21312336
19.

A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion.

Papadimitropoulos A, Riboldi SA, Tonnarelli B, Piccinini E, Woodruff MA, Hutmacher DW, Martin I.

J Tissue Eng Regen Med. 2013 Mar;7(3):183-91. doi: 10.1002/term.506. Epub 2011 Nov 17.

PMID:
22095721
20.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

Supplemental Content

Support Center