Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs.

Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA.

Nat Struct Mol Biol. 2011 Feb;18(2):237-44. doi: 10.1038/nsmb.1991. Epub 2011 Jan 23. Erratum in: Nat Struct Mol Biol. 2011 Sep;18(9):1084.

2.

Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells.

Hanina SA, Mifsud W, Down TA, Hayashi K, O'Carroll D, Lao K, Miska EA, Surani MA.

PLoS Genet. 2010 Oct 21;6(10):e1001163. doi: 10.1371/journal.pgen.1001163.

3.

Human Argonaute 2 Is Tethered to Ribosomal RNA through MicroRNA Interactions.

Atwood BL, Woolnough JL, Lefevre GM, Saint Just Ribeiro M, Felsenfeld G, Giles KE.

J Biol Chem. 2016 Aug 19;291(34):17919-28. doi: 10.1074/jbc.M116.725051. Epub 2016 Jun 10.

4.

Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues.

Castellano L, Stebbing J.

Nucleic Acids Res. 2013 Mar 1;41(5):3339-51. doi: 10.1093/nar/gks1474. Epub 2013 Jan 15.

5.

Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis.

Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O'Carroll D, Lai EC.

Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15163-8. doi: 10.1073/pnas.1006432107. Epub 2010 Aug 10.

6.

Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases.

Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ.

Mol Cell. 2010 Jun 25;38(6):781-8. doi: 10.1016/j.molcel.2010.06.001.

7.

Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.

Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R.

Genes Dev. 2008 Oct 15;22(20):2773-85. doi: 10.1101/gad.1705308.

8.

Clarifying mammalian RISC assembly in vitro.

Tan GS, Garchow BG, Liu X, Metzler D, Kiriakidou M.

BMC Mol Biol. 2011 Apr 29;12:19. doi: 10.1186/1471-2199-12-19.

9.

Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance.

Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO.

PLoS One. 2008 May 7;3(5):e2126. doi: 10.1371/journal.pone.0002126. Erratum in: PLoS ONE. 2008;3(11).doi.org/10.1371/annotation/c8902b4c-30fc-42e7-b506-fc756a3cdd4e.

10.

Impaired micro-RNA pathways diminish osteoclast differentiation and function.

Sugatani T, Hruska KA.

J Biol Chem. 2009 Feb 13;284(7):4667-78. doi: 10.1074/jbc.M805777200. Epub 2008 Dec 5.

11.

From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data.

Bottini S, Hamouda-Tekaya N, Tanasa B, Zaragosi LE, Grandjean V, Repetto E, Trabucchi M.

Nucleic Acids Res. 2017 May 19;45(9):e71. doi: 10.1093/nar/gkx007.

12.

Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates.

Karginov FV, Hannon GJ.

Genes Dev. 2013 Jul 15;27(14):1624-32. doi: 10.1101/gad.215939.113. Epub 2013 Jul 3.

13.

Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors.

Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, Sun YE, Hart RP.

PLoS One. 2009 Sep 28;4(9):e7192. doi: 10.1371/journal.pone.0007192.

14.

Argonaute proteins regulate HIV-1 multiply spliced RNA and viral production in a Dicer independent manner.

Eckenfelder A, Ségéral E, Pinzón N, Ulveling D, Amadori C, Charpentier M, Nidelet S, Concordet JP, Zagury JF, Paillart JC, Berlioz-Torrent C, Seitz H, Emiliani S, Gallois-Montbrun S.

Nucleic Acids Res. 2017 Apr 20;45(7):4158-4173. doi: 10.1093/nar/gkw1289.

15.

Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin.

Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO.

RNA Biol. 2011 Jan-Feb;8(1):158-77. Epub 2011 Jan 1.

16.

TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.

Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R.

Nature. 2005 Aug 4;436(7051):740-4. Epub 2005 Jun 22.

17.

MicroRNAs and their isomiRs function cooperatively to target common biological pathways.

Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S, Barbacioru C, Steptoe AL, Martin HC, Nourbakhsh E, Krishnan K, Gardiner B, Wang X, Nones K, Steen JA, Matigian NA, Wood DL, Kassahn KS, Waddell N, Shepherd J, Lee C, Ichikawa J, McKernan K, Bramlett K, Kuersten S, Grimmond SM.

Genome Biol. 2011 Dec 30;12(12):R126. doi: 10.1186/gb-2011-12-12-r126.

18.

Comprehensive analysis of microRNA (miRNA) targets in breast cancer cells.

Fan M, Krutilina R, Sun J, Sethuraman A, Yang CH, Wu ZH, Yue J, Pfeffer LM.

J Biol Chem. 2013 Sep 20;288(38):27480-93. doi: 10.1074/jbc.M113.491803. Epub 2013 Aug 6.

19.

Expanded RNA-binding activities of mammalian Argonaute 2.

Tan GS, Garchow BG, Liu X, Yeung J, Morris JP 4th, Cuellar TL, McManus MT, Kiriakidou M.

Nucleic Acids Res. 2009 Dec;37(22):7533-45. doi: 10.1093/nar/gkp812.

20.

Screening for possible miRNA-mRNA associations in a colon cancer cell line.

Kanematsu S, Tanimoto K, Suzuki Y, Sugano S.

Gene. 2014 Jan 10;533(2):520-31. doi: 10.1016/j.gene.2013.08.005. Epub 2013 Aug 9.

PMID:
23939471

Supplemental Content

Support Center