Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 199

1.

A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations.

Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G, Price ND, Hood LE, Tian Q.

Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1591-6. doi: 10.1073/pnas.1018696108. Epub 2011 Jan 10.

2.

Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein.

Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M.

PLoS One. 2013 May 29;8(5):e64169. doi: 10.1371/journal.pone.0064169. Print 2013.

3.

Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.

Garcia JL, Perez-Caro M, Gomez-Moreta JA, Gonzalez F, Ortiz J, Blanco O, Sancho M, Hernandez-Rivas JM, Gonzalez-Sarmiento R, Sanchez-Martin M.

BMC Cancer. 2010 Aug 24;10:454. doi: 10.1186/1471-2407-10-454.

4.

Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ.

Mol Cancer Res. 2009 Apr;7(4):489-97. doi: 10.1158/1541-7786.MCR-08-0360. Erratum in: Mol Cancer Res. 2009 Jun;7(6):987. Shankavarum, Uma T [corrected to Shankavaram, Uma T].

5.

Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme.

Brown DV, Daniel PM, D'Abaco GM, Gogos A, Ng W, Morokoff AP, Mantamadiotis T.

Oncotarget. 2015 Mar 20;6(8):6267-80.

6.

Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin.

Lottaz C, Beier D, Meyer K, Kumar P, Hermann A, Schwarz J, Junker M, Oefner PJ, Bogdahn U, Wischhusen J, Spang R, Storch A, Beier CP.

Cancer Res. 2010 Mar 1;70(5):2030-40. doi: 10.1158/0008-5472.CAN-09-1707. Epub 2010 Feb 9.

7.

Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells.

Venugopal C, Hallett R, Vora P, Manoranjan B, Mahendram S, Qazi MA, McFarlane N, Subapanditha M, Nolte SM, Singh M, Bakhshinyan D, Garg N, Vijayakumar T, Lach B, Provias JP, Reddy K, Murty NK, Doble BW, Bhatia M, Hassell JA, Singh SK.

Clin Cancer Res. 2015 Dec 1;21(23):5324-37. doi: 10.1158/1078-0432.CCR-14-3147. Epub 2015 Jul 7.

8.

CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme.

Choy W, Nagasawa DT, Trang A, Thill K, Spasic M, Yang I.

Neurosurg Clin N Am. 2012 Jul;23(3):391-405. doi: 10.1016/j.nec.2012.04.011. Epub 2012 Jun 5. Review.

PMID:
22748652
9.

Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression.

Gambelli F, Sasdelli F, Manini I, Gambarana C, Oliveri G, Miracco C, Sorrentino V.

Cell Biol Int. 2012 Jan;36(1):29-38. doi: 10.1042/CBI20110013.

PMID:
21916848
10.

Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors.

Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY, Tso JL, Liu JY, Konkankit V, Cloughesy TF, Mischel PS, Lane TF, Liau LM, Nelson SF, Tso CL.

J Neurooncol. 2009 Aug;94(1):1-19. doi: 10.1007/s11060-009-9919-z. Epub 2009 May 26.

11.

Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.

Zhu X, Prasad S, Gaedicke S, Hettich M, Firat E, Niedermann G.

Oncotarget. 2015 Jan 1;6(1):171-84.

12.

[Application of genome-wide genechip for screening and identifying genes related to CD133(+)CD200(+) colorectal cancer stem cells].

Zhang S, Li L, Huang Z, Xin X, Xiao B.

Nan Fang Yi Ke Da Xue Xue Bao. 2013 Dec;33(12):1787-91. Chinese.

13.

BMI1 sustains human glioblastoma multiforme stem cell renewal.

Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G.

J Neurosci. 2009 Jul 15;29(28):8884-96. doi: 10.1523/JNEUROSCI.0968-09.2009.

14.

CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.

Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP.

Cancer Res. 2007 May 1;67(9):4010-5.

15.

Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis.

Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T, Pierconti F, Martini M, De Maria R, Larocca LM.

Cancer. 2011 Jan 1;117(1):162-74. doi: 10.1002/cncr.25581. Epub 2010 Aug 30. Erratum in: Cancer. 2016 Oct;122(19):3090.

17.

Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis.

Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS Jr, Crawford H, Dufour A, Ju J, Wang Y, Leyfman Y, Botchkina GI.

Cancer Genomics Proteomics. 2009 Jan-Feb;6(1):19-29.

18.

Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens.

Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, Forsyth P, Auer RN, Dunn JF, Cairncross JG, Parney IF, Weiss S.

Stem Cells. 2009 Aug;27(8):1722-33. doi: 10.1002/stem.98.

19.

Expression of multidrug resistance genes in normal and cancer stem cells.

Shervington A, Lu C.

Cancer Invest. 2008 Jun;26(5):535-42. doi: 10.1080/07357900801904140.

PMID:
18568776
20.

CD133 is essential for glioblastoma stem cell maintenance.

Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G.

Stem Cells. 2013 May;31(5):857-69. doi: 10.1002/stem.1317.

Supplemental Content

Support Center