Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Extending the usability of the phasing power of diselenide bonds: SeCys SAD phasing of CsgC using a non-auxotrophic strain.

Salgado PS, Taylor JD, Cota E, Matthews SJ.

Acta Crystallogr D Biol Crystallogr. 2011 Jan;67(Pt 1):8-13. doi: 10.1107/S0907444910042022. Epub 2010 Dec 16.

2.

Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing.

Strub MP, Hoh F, Sanchez JF, Strub JM, Böck A, Aumelas A, Dumas C.

Structure. 2003 Nov;11(11):1359-67.

3.

Speciation of selenomethionine and selenocystine using online micro-column containing Cu(II) loaded nanometer-sized Al2O3 coupled with ICP-MS detection.

Duan J, Hu B.

Talanta. 2009 Aug 15;79(3):734-8. doi: 10.1016/j.talanta.2009.04.063. Epub 2009 May 7.

PMID:
19576438
4.

Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC-inductively coupled plasma mass spectrometry.

Lipiec E, Siara G, Bierla K, Ouerdane L, Szpunar J.

Anal Bioanal Chem. 2010 May;397(2):731-41. doi: 10.1007/s00216-010-3544-8. Epub 2010 Mar 13.

PMID:
20229009
5.

Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction.

Bierla K, Dernovics M, Vacchina V, Szpunar J, Bertin G, Lobinski R.

Anal Bioanal Chem. 2008 Apr;390(7):1789-98. doi: 10.1007/s00216-008-1883-5. Epub 2008 Feb 19.

PMID:
18283440
6.

The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se)2-thioredoxin.

Müller S, Senn H, Gsell B, Vetter W, Baron C, Böck A.

Biochemistry. 1994 Mar 22;33(11):3404-12.

PMID:
8136378
7.

Selenium derivatization of nucleic acids for crystallography.

Jiang J, Sheng J, Carrasco N, Huang Z.

Nucleic Acids Res. 2007;35(2):477-85. Epub 2006 Dec 14.

8.

Structure of the cyanobactin oxidase ThcOx from Cyanothece sp. PCC 7425, the first structure to be solved at Diamond Light Source beamline I23 by means of S-SAD.

Bent AF, Mann G, Houssen WE, Mykhaylyk V, Duman R, Thomas L, Jaspars M, Wagner A, Naismith JH.

Acta Crystallogr D Struct Biol. 2016 Nov 1;72(Pt 11):1174-1180. Epub 2016 Oct 28.

9.

Data-collection strategy for challenging native SAD phasing.

Olieric V, Weinert T, Finke AD, Anders C, Li D, Olieric N, Borca CN, Steinmetz MO, Caffrey M, Jinek M, Wang M.

Acta Crystallogr D Struct Biol. 2016 Mar;72(Pt 3):421-9. doi: 10.1107/S2059798315024110. Epub 2016 Mar 1.

10.

Escherichia coli MltA: MAD phasing and refinement of a tetartohedrally twinned protein crystal structure.

Barends TR, de Jong RM, van Straaten KE, Thunnissen AM, Dijkstra BW.

Acta Crystallogr D Biol Crystallogr. 2005 May;61(Pt 5):613-21. Epub 2005 Apr 20. Erratum in: Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1172.

PMID:
15858272
11.

Crystallization and X-ray diffraction analysis of a novel immune-type receptor from Ictalurus punctatus and phasing by selenium anomalous dispersion methods.

Ostrov DA, Hernández Prada JA, Haire RN, Cannon JP, Magis AT, Bailey K, Litman GW.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Dec 1;63(Pt 12):1035-7. Epub 2007 Nov 21.

12.

Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion.

Wu HY, Cheng YS.

Acta Crystallogr F Struct Biol Commun. 2014 Mar;70(Pt 3):378-83. doi: 10.1107/S2053230X14001897. Epub 2014 Feb 19.

13.

Novel complex MAD phasing and RNase H structural insights using selenium oligonucleotides.

Abdur R, Gerlits OO, Gan J, Jiang J, Salon J, Kovalevsky AY, Chumanevich AA, Weber IT, Huang Z.

Acta Crystallogr D Biol Crystallogr. 2014 Feb;70(Pt 2):354-61. doi: 10.1107/S1399004713027922. Epub 2014 Jan 29.

14.

Influence of Dietary Selenium Species on Selenoamino Acid Levels in Rainbow Trout.

Godin S, Fontagné-Dicharry S, Bueno M, Tacon P, Prabhu PA, Kaushik S, Médale F, Bouyssiere B.

J Agric Food Chem. 2015 Jul 22;63(28):6484-92. doi: 10.1021/acs.jafc.5b00768. Epub 2015 Jul 10.

PMID:
26161943
16.

Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae.

Ouerdane L, Mester Z.

J Agric Food Chem. 2008 Dec 24;56(24):11792-9. doi: 10.1021/jf8018479.

PMID:
19035646
17.

Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

Kawahara K, Oki H, Fukakusa S, Maruno T, Kobayashi Y, Motooka D, Taniguchi T, Honda T, Iida T, Nakamura S, Ohkubo T.

Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):663-7. doi: 10.1107/S2053230X15005890. Epub 2015 May 20.

18.

Synthesis of seleno-fucose compounds and their application to the X-ray structural determination of carbohydrate-lectin complexes using single/multi-wavelength anomalous dispersion phasing.

Shimabukuro J, Makyio H, Suzuki T, Nishikawa Y, Kawasaki M, Imamura A, Ishida H, Ando H, Kato R, Kiso M.

Bioorg Med Chem. 2017 Feb 1;25(3):1132-1142. doi: 10.1016/j.bmc.2016.12.021. Epub 2016 Dec 19.

PMID:
28041800
19.

Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus.

Maseko T, Callahan DL, Dunshea FR, Doronila A, Kolev SD, Ng K.

Food Chem. 2013 Dec 15;141(4):3681-7. doi: 10.1016/j.foodchem.2013.06.027. Epub 2013 Jun 15.

PMID:
23993536
20.

Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.

Gladyshev VN, Khangulov SV, Axley MJ, Stadtman TC.

Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7708-11.

Supplemental Content

Support Center