Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action.

Kapitzky L, Beltrao P, Berens TJ, Gassner N, Zhou C, Wüster A, Wu J, Babu MM, Elledge SJ, Toczyski D, Lokey RS, Krogan NJ.

Mol Syst Biol. 2010 Dec 21;6:451. doi: 10.1038/msb.2010.107.

2.

Chemical-genetic approaches for exploring the mode of action of natural products.

Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.

Prog Drug Res. 2008;66:237, 239-71. Review.

PMID:
18416308
3.

A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe.

Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P.

Toxicol Sci. 2008 Nov;106(1):124-39. doi: 10.1093/toxsci/kfn153. Epub 2008 Aug 6.

4.

Chemogenomic profiling: identifying the functional interactions of small molecules in yeast.

Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW.

Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):793-8. Epub 2004 Jan 12.

5.

Genetic Screens for Determination of Mechanism of Action.

Gay-Andrieu F, Alex D, Calderone R.

Methods Mol Biol. 2016;1356:165-72. doi: 10.1007/978-1-4939-3052-4_12.

PMID:
26519072
6.

High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions.

Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar B, Plikat U, Abraham Y, Altorfer M, Aust T, Baeriswyl L, Cerino R, Chang L, Estoppey D, Eichenberger J, Frederiksen M, Hartmann N, Hohendahl A, Knapp B, Krastel P, Melin N, Nigsch F, Oakeley EJ, Petitjean V, Petersen F, Riedl R, Schmitt EK, Staedtler F, Studer C, Tallarico JA, Wetzel S, Fishman MC, Porter JA, Movva NR.

Microbiol Res. 2014 Feb-Mar;169(2-3):107-20. doi: 10.1016/j.micres.2013.11.004. Epub 2013 Dec 1.

7.

Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces Pombe Model Organism.

Zhang X, Fang Y, Jaiseng W, Hu L, Lu Y, Ma Y, Furuyashiki T.

Kobe J Med Sci. 2015 Oct 9;61(2):E54-63.

8.

Genomewide screening for genes associated with gliotoxin resistance and sensitivity in Saccharomyces cerevisiae.

Chamilos G, Lewis RE, Lamaris GA, Albert ND, Kontoyiannis DP.

Antimicrob Agents Chemother. 2008 Apr;52(4):1325-9. doi: 10.1128/AAC.01393-07. Epub 2008 Jan 22.

9.

Chemical genetic and chemogenomic analysis in yeast.

Coorey NV, Sampson LD, Barber JM, Bellows DS.

Methods Mol Biol. 2014;1205:169-86. doi: 10.1007/978-1-4939-1363-3_11.

PMID:
25213245
10.

The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation Components.

Raj S, Krishnan K, Askew DS, Helynck O, Suzanne P, Lesnard A, Rault S, Zeidler U, d'Enfert C, Latgé JP, Munier-Lehmann H, Saveanu C.

Antimicrob Agents Chemother. 2015 Dec 14;60(3):1438-49. doi: 10.1128/AAC.02239-15.

11.

Genome-wide analysis of the expression profile of Saccharomyces cerevisiae in response to treatment with the plant isoflavone, wighteone, as a potential antifungal agent.

Yin H, Zhao Y, Zhang Y, Zhang H, Xu L, Zou Z, Yang W, Cheng J, Zhou Y.

Biotechnol Lett. 2006 Jan;28(2):99-105.

PMID:
16369693
12.

Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae.

Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM.

J Biol Chem. 2003 Sep 12;278(37):34998-5015. Epub 2003 Jun 24.

13.

A genomewide screen in Schizosaccharomyces pombe for genes affecting the sensitivity of antifungal drugs that target ergosterol biosynthesis.

Fang Y, Hu L, Zhou X, Jaiseng W, Zhang B, Takami T, Kuno T.

Antimicrob Agents Chemother. 2012 Apr;56(4):1949-59. doi: 10.1128/AAC.05126-11. Epub 2012 Jan 17.

14.

A genome-wide screening of potential target genes to enhance the antifungal activity of micafungin in Schizosaccharomyces pombe.

Zhou X, Ma Y, Fang Y, gerile W, Jaiseng W, Yamada Y, Kuno T.

PLoS One. 2013 May 30;8(5):e65904. doi: 10.1371/journal.pone.0065904. Print 2013.

15.

Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance.

Van Driessche B, Tafforeau L, Hentges P, Carr AM, Vandenhaute J.

Yeast. 2005 Oct 15;22(13):1061-8.

16.

Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics.

Jaime MD, Lopez-Llorca LV, Conesa A, Lee AY, Proctor M, Heisler LE, Gebbia M, Giaever G, Westwood JT, Nislow C.

BMC Genomics. 2012 Jun 22;13:267. doi: 10.1186/1471-2164-13-267.

17.

The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.

Quek NC, Matthews JH, Bloor SJ, Jones DA, Bircham PW, Heathcott RW, Atkinson PH.

Mol Biosyst. 2013 Aug;9(8):2125-33. doi: 10.1039/c3mb70056a. Epub 2013 May 28.

PMID:
23715404
18.

Exploring gene function and drug action using chemogenomic dosage assays.

Ericson E, Hoon S, St Onge RP, Giaever G, Nislow C.

Methods Enzymol. 2010;470:233-55. doi: 10.1016/S0076-6879(10)70010-0. Epub 2010 Mar 1.

PMID:
20946813
19.

Microarray-based target identification using drug hypersensitive fission yeast expressing ORFeome.

Arita Y, Nishimura S, Matsuyama A, Yashiroda Y, Usui T, Boone C, Yoshida M.

Mol Biosyst. 2011 May;7(5):1463-72. doi: 10.1039/c0mb00326c. Epub 2011 Feb 22.

PMID:
21340088
20.

Chemogenomic and transcriptome analysis identifies mode of action of the chemosensitizing agent CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine).

Batova M, Klobucnikova V, Oblasova Z, Gregan J, Zahradnik P, Hapala I, Subik J, Schüller C.

BMC Genomics. 2010 Mar 4;11:153. doi: 10.1186/1471-2164-11-153.

Supplemental Content

Support Center