Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Single InGaAs Quantum Dot Coupling to the Plasmon Resonance of a Metal Nanocrystal.

Urbańczyk A, Hamhuis GJ, Nötzel R.

Nanoscale Res Lett. 2010 Sep 28;5(12):1926-9. doi: 10.1007/s11671-010-9785-9.

2.

InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

Bru-Chevallier C, El Akra A, Pelloux-Gervais D, Dumont H, Canut B, Chauvin N, Regreny P, Gendry M, Patriarche G, Jancu JM, Even J, Noe P, Calvo V, Salem B.

J Nanosci Nanotechnol. 2011 Oct;11(10):9153-9.

PMID:
22400316
3.

Full spectral and angular characterization of highly directional emission from nanocrystal quantum dots positioned on circular plasmonic lenses.

Harats MG, Livneh N, Zaiats G, Yochelis S, Paltiel Y, Lifshitz E, Rapaport R.

Nano Lett. 2014 Oct 8;14(10):5766-71. doi: 10.1021/nl502652k. Epub 2014 Sep 2.

PMID:
25153365
4.

Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.

Dey S, Zhao J.

J Phys Chem Lett. 2016 Aug 4;7(15):2921-9. doi: 10.1021/acs.jpclett.6b01164. Epub 2016 Jul 19.

PMID:
27411778
5.

Self-assembled InAs/GaAs quantum dots covered by different strain reducing layers exhibiting strong photo- and electroluminescence in 1.3 and 1.55 microm bands.

Hazdra P, Oswald J, Komarnitskyy V, Kuldová K, Hospodková A, Hulicius E, Pangrác J.

J Nanosci Nanotechnol. 2011 Aug;11(8):6804-9.

PMID:
22103083
6.

Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays.

Gao H, Tung KH, Teng J, Chua SJ, Xiang N.

Appl Opt. 2013 Jun 1;52(16):3698-702. doi: 10.1364/AO.52.003698.

PMID:
23736322
7.

Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.

Sadeghi SM, Wing WJ, Gutha RR, Sharp C.

Nanotechnology. 2018 Jan 5;29(1):015402. doi: 10.1088/1361-6528/aa9a1c.

PMID:
29130899
8.

Correlation of atomic structure and photoluminescence of the same quantum dot: pinpointing surface and internal defects that inhibit photoluminescence.

Orfield NJ, McBride JR, Keene JD, Davis LM, Rosenthal SJ.

ACS Nano. 2015 Jan 27;9(1):831-9. doi: 10.1021/nn506420w. Epub 2014 Dec 23.

PMID:
25526260
9.

Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.

Ozel T, Nizamoglu S, Sefunc MA, Samarskaya O, Ozel IO, Mutlugun E, Lesnyak V, Gaponik N, Eychmuller A, Gaponenko SV, Demir HV.

ACS Nano. 2011 Feb 22;5(2):1328-34. doi: 10.1021/nn1030324. Epub 2011 Jan 19.

PMID:
21247187
10.

Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature.

Benyoucef M, Zuerbig V, Reithmaier JP, Kroh T, Schell AW, Aichele T, Benson O.

Nanoscale Res Lett. 2012 Aug 31;7(1):493. doi: 10.1186/1556-276X-7-493.

11.

Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance.

Niezgoda JS, Rosenthal SJ.

Chemphyschem. 2016 Mar 3;17(5):645-53. doi: 10.1002/cphc.201500758. Epub 2016 Jan 8. Review.

PMID:
26530667
12.

Surface plasmon-quantum dot coupling from arrays of nanoholes.

Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang CW, Gordon R, Riordon J, Kavanagh KL.

J Phys Chem B. 2006 Apr 27;110(16):8307-13.

PMID:
16623513
13.

Low density InAs/(In)GaAs quantum dots emitting at long wavelengths.

Trevisi G, Seravalli L, Frigeri P, Franchi S.

Nanotechnology. 2009 Oct 14;20(41):415607. doi: 10.1088/0957-4484/20/41/415607. Epub 2009 Sep 18.

PMID:
19762951
14.

Spontaneous Spectral Diffusion in CdSe Quantum Dots.

Fernée MJ, Plakhotnik T, Louyer Y, Littleton BN, Potzner C, Tamarat P, Mulvaney P, Lounis B.

J Phys Chem Lett. 2012 Jun 21;3(12):1716-20. doi: 10.1021/jz300456h. Epub 2012 Jun 11.

PMID:
26285734
15.

Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.

Passmore BS, Adams DC, Ribaudo T, Wasserman D, Lyon S, Davids P, Chow WW, Shaner EA.

Nano Lett. 2011 Feb 9;11(2):338-42. doi: 10.1021/nl102412h. Epub 2011 Jan 7.

PMID:
21214167
16.

The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures.

Seravalli L, Trevisi G, Frigeri P, Franchi S, Geddo M, Guizzetti G.

Nanotechnology. 2009 Jul 8;20(27):275703. doi: 10.1088/0957-4484/20/27/275703. Epub 2009 Jun 17.

PMID:
19531853
17.

Detailed Study of the Influence of InGaAs Matrix on the Strain Reduction in the InAs Dot-In-Well Structure.

Wang P, Chen Q, Wu X, Cao C, Wang S, Gong Q.

Nanoscale Res Lett. 2016 Dec;11(1):119. doi: 10.1186/s11671-016-1339-3. Epub 2016 Mar 1.

18.

Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K.

Kalden J, Tessarek C, Sebald K, Figge S, Kruse C, Hommel D, Gutowski J.

Nanotechnology. 2010 Jan 8;21(1):015204. doi: 10.1088/0957-4484/21/1/015204. Epub 2009 Nov 30.

PMID:
19946174
19.

Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.

He Y, Jiang C, Chen B, Li JJ, Zhu KD.

Opt Lett. 2012 Jul 15;37(14):2943-5. doi: 10.1364/OL.37.002943.

PMID:
22825186
20.

Evolution of the Single-Nanocrystal Photoluminescence Linewidth with Size and Shell: Implications for Exciton-Phonon Coupling and the Optimization of Spectral Linewidths.

Cui J, Beyler AP, Coropceanu I, Cleary L, Avila TR, Chen Y, Cordero JM, Heathcote SL, Harris DK, Chen O, Cao J, Bawendi MG.

Nano Lett. 2016 Jan 13;16(1):289-96. doi: 10.1021/acs.nanolett.5b03790. Epub 2015 Dec 4.

PMID:
26636347

Supplemental Content

Support Center