Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.
2.

The basic reproduction ratio for sexually transmitted diseases: I. Theoretical considerations.

Diekmann O, Dietz K, Heesterbeek JA.

Math Biosci. 1991 Dec;107(2):325-39.

PMID:
1806121
3.

Threshold conditions for infection persistence in complex host-vectors interactions.

Lopez LF, Coutinho FA, Burattini MN, Massad E.

C R Biol. 2002 Nov;325(11):1073-84.

PMID:
12506721
4.

Modelling sexually transmitted infections: the effect of partnership activity and number of partners on R0.

Britton T, Nordvik MK, Liljeros F.

Theor Popul Biol. 2007 Nov;72(3):389-99.

PMID:
17707873
5.

On vaccine efficacy and reproduction numbers.

Farrington CP.

Math Biosci. 2003 Sep;185(1):89-109.

PMID:
12900143
6.

Case and partnership reproduction numbers for a curable sexually transmitted infection.

Heijne JC, Herzog SA, Althaus CL, Low N, Kretzschmar M.

J Theor Biol. 2013 Aug 21;331:38-47. doi: 10.1016/j.jtbi.2013.04.010.

PMID:
23608632
7.
8.

The basic reproduction ratio R0 for a sexually transmitted disease in a pair formation model with two types of pairs.

Kretzschmar M, Jager JC, Reinking DP, Van Zessen G, Brouwers H.

Math Biosci. 1994 Dec;124(2):181-205.

PMID:
7833594
9.
10.

SI infection on a dynamic partnership network: characterization of R0.

Leung KY, Kretzschmar M, Diekmann O.

J Math Biol. 2015 Jul;71(1):1-56. doi: 10.1007/s00285-014-0808-5.

11.

The basic reproduction ratio for sexually transmitted diseases. Part 2. Effects of variable HIV infectivity.

Dietz K, Heesterbeek JA, Tudor DW.

Math Biosci. 1993 Sep-Oct;117(1-2):35-47.

PMID:
8400583
12.

On a new perspective of the basic reproduction number in heterogeneous environments.

Inaba H.

J Math Biol. 2012 Aug;65(2):309-48. doi: 10.1007/s00285-011-0463-z.

PMID:
21842424
13.

Optimal vaccine trial design when estimating vaccine efficacy for susceptibility and infectiousness from multiple populations.

Longini IM Jr, Sagatelian K, Rida WN, Halloran ME.

Stat Med. 1998 May 30;17(10):1121-36. Erratum in: Stat Med 1999 Apr 15;18(7):890.

PMID:
9618773
14.

Superspreading and the effect of individual variation on disease emergence.

Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM.

Nature. 2005 Nov 17;438(7066):355-9.

PMID:
16292310
15.

Calculation of R0 for age-of-infection models.

Yang CK, Brauer F.

Math Biosci Eng. 2008 Jul;5(3):585-99.

PMID:
18616360
16.

The computation of R0 for discrete-time epidemic models with dynamic heterogeneity.

De Jong MC, Diekmann O, Heesterbeek JA.

Math Biosci. 1994 Jan;119(1):97-114.

PMID:
8111138
17.

A core group model for disease transmission.

Hadeler KP, Castillo-Chavez C.

Math Biosci. 1995 Jul-Aug;128(1-2):41-55.

PMID:
7606144
18.
19.
20.

Chlamydia transmission: concurrency, reproduction number, and the epidemic trajectory.

Potterat JJ, Zimmerman-Rogers H, Muth SQ, Rothenberg RB, Green DL, Taylor JE, Bonney MS, White HA.

Am J Epidemiol. 1999 Dec 15;150(12):1331-9.

PMID:
10604776

Supplemental Content

Support Center