Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 231

1.

Amniocytes can serve a dual function as a source of iPS cells and feeder layers.

Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y, Day D, Eaton JL, George LL, Naber C, Turbe-Doan A, Park PJ, Hornstein MD, Maas RL.

Hum Mol Genet. 2011 Mar 1;20(5):962-74. doi: 10.1093/hmg/ddq542.

2.

Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion.

Du SH, Tay JC, Chen C, Tay FC, Tan WK, Li ZD, Wang S.

J Biosci Bioeng. 2015 Aug;120(2):210-7. doi: 10.1016/j.jbiosc.2014.12.009.

PMID:
25622768
3.

Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells.

Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, Yu H, Jin S, Wei Z, Chen F, Jin Y.

Hum Mol Genet. 2009 Nov 15;18(22):4340-9. doi: 10.1093/hmg/ddp386.

PMID:
19679563
4.

Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression.

Liu T, Cheng W, Huang Y, Huang Q, Jiang L, Guo L.

Exp Cell Res. 2012 Feb 15;318(4):424-34. doi: 10.1016/j.yexcr.2011.12.004.

PMID:
22200372
5.

Neural stem cells achieve and maintain pluripotency without feeder cells.

Choi HW, Kim JS, Choi S, Jang HJ, Kim MJ, Choi Y, Schöler HR, Chung HM, Do JT.

PLoS One. 2011;6(6):e21367. doi: 10.1371/journal.pone.0021367.

6.

Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system.

Lu HE, Tsai MS, Yang YC, Yuan CC, Wang TH, Lin XZ, Tseng CP, Hwang SM.

Exp Cell Res. 2011 Aug 1;317(13):1895-903. doi: 10.1016/j.yexcr.2011.05.017.

PMID:
21640101
7.

Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells.

Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K.

Stem Cells Dev. 2010 Feb;19(2):229-38. doi: 10.1089/scd.2009.0149.

PMID:
19558219
8.

Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells.

Havasi P, Nabioni M, Soleimani M, Bakhshandeh B, Parivar K.

Mol Biol Rep. 2013 Apr;40(4):3023-31. doi: 10.1007/s11033-012-2376-3.

PMID:
23283738
9.

Effective culture conditions for the induction of pluripotent stem cells.

Okada M, Oka M, Yoneda Y.

Biochim Biophys Acta. 2010 Sep;1800(9):956-63. doi: 10.1016/j.bbagen.2010.04.004.

PMID:
20417254
10.

Gingival fibroblasts as a promising source of induced pluripotent stem cells.

Egusa H, Okita K, Kayashima H, Yu G, Fukuyasu S, Saeki M, Matsumoto T, Yamanaka S, Yatani H.

PLoS One. 2010 Sep 14;5(9):e12743. doi: 10.1371/journal.pone.0012743.

11.

Magnetically labeled feeder system for mouse pluripotent stem cell culture.

Horie M, Ito A, Maki T, Kawabe Y, Kamihira M.

J Biosci Bioeng. 2015 May;119(5):614-6. doi: 10.1016/j.jbiosc.2014.10.020.

PMID:
25468421
12.

Low microRNA-199a expression in human amniotic epithelial cell feeder layers maintains human-induced pluripotent stem cell pluripotency via increased leukemia inhibitory factor expression.

Liu T, Chen Q, Huang Y, Huang Q, Jiang L, Guo L.

Acta Biochim Biophys Sin (Shanghai). 2012 Mar;44(3):197-206. doi: 10.1093/abbs/gmr127.

PMID:
22285730
13.

Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells.

Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, Lafferty J, McGinn JT, Brodman M, Fuster V, Hajjar RJ, Polgar K.

Cell Reprogram. 2010 Apr;12(2):117-25. doi: 10.1089/cell.2009.0077.

14.

SNL fibroblast feeder layers support derivation and maintenance of human induced pluripotent stem cells.

Pan C, Hicks A, Guan X, Chen H, Bishop CE.

J Genet Genomics. 2010 Apr;37(4):241-8. doi: 10.1016/S1673-8527(09)60042-4.

15.

Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions.

Hayashi Y, Chan T, Warashina M, Fukuda M, Ariizumi T, Okabayashi K, Takayama N, Otsu M, Eto K, Furue MK, Michiue T, Ohnuma K, Nakauchi H, Asashima M.

PLoS One. 2010 Nov 23;5(11):e14099. doi: 10.1371/journal.pone.0014099.

16.

Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts.

Nishino K, Toyoda M, Yamazaki-Inoue M, Makino H, Fukawatase Y, Chikazawa E, Takahashi Y, Miyagawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A.

PLoS One. 2010 Sep 27;5(9):e13017. doi: 10.1371/journal.pone.0013017.

17.

Small molecule mesengenic induction of human induced pluripotent stem cells to generate mesenchymal stem/stromal cells.

Chen YS, Pelekanos RA, Ellis RL, Horne R, Wolvetang EJ, Fisk NM.

Stem Cells Transl Med. 2012 Feb;1(2):83-95. doi: 10.5966/sctm.2011-0022.

18.

High efficiency of reprogramming CD34⁺ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4.

Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, Jiang L, Guo L, Cheng W.

Stem Cells Dev. 2012 Aug 10;21(12):2322-32. doi: 10.1089/scd.2011.0715.

PMID:
22264161
19.

Comparison of reprogramming ability of mouse ES and iPS cells measured by somatic cell fusion.

Sumer H, Nicholls C, Liu J, Tat PA, Liu JP, Verma PJ.

Int J Dev Biol. 2010;54(11-12):1723-8. doi: 10.1387/ijdb.103204hs.

20.

Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer.

Muenthaisong S, Ujhelly O, Polgar Z, Varga E, Ivics Z, Pirity MK, Dinnyes A.

Exp Cell Res. 2012 Nov 15;318(19):2482-9. doi: 10.1016/j.yexcr.2012.07.014.

PMID:
22846649

Supplemental Content

Support Center