Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103


Splicing-dependent RNA polymerase pausing in yeast.

Alexander RD, Innocente SA, Barrass JD, Beggs JD.

Mol Cell. 2010 Nov 24;40(4):582-93. doi: 10.1016/j.molcel.2010.11.005.


Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.

Carrillo Oesterreich F, Preibisch S, Neugebauer KM.

Mol Cell. 2010 Nov 24;40(4):571-81. doi: 10.1016/j.molcel.2010.11.004.


A splicing-dependent transcriptional checkpoint associated with prespliceosome formation.

Chathoth KT, Barrass JD, Webb S, Beggs JD.

Mol Cell. 2014 Mar 6;53(5):779-90. doi: 10.1016/j.molcel.2014.01.017. Epub 2014 Feb 20.


Extremely fast and incredibly close: cotranscriptional splicing in budding yeast.

Wallace EWJ, Beggs JD.

RNA. 2017 May;23(5):601-610. doi: 10.1261/rna.060830.117. Epub 2017 Feb 2. Review.


Gene-specific RNA polymerase II phosphorylation and the CTD code.

Kim H, Erickson B, Luo W, Seward D, Graber JH, Pollock DD, Megee PC, Bentley DL.

Nat Struct Mol Biol. 2010 Oct;17(10):1279-86. doi: 10.1038/nsmb.1913. Epub 2010 Sep 12.


Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II.

Oesterreich FC, Herzel L, Straube K, Hujer K, Howard J, Neugebauer KM.

Cell. 2016 Apr 7;165(2):372-381. doi: 10.1016/j.cell.2016.02.045. Epub 2016 Mar 24.


Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.

Krishnamurthy S, Ghazy MA, Moore C, Hampsey M.

Mol Cell Biol. 2009 Jun;29(11):2925-34. doi: 10.1128/MCB.01655-08. Epub 2009 Mar 30.


Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing.

Kong KY, Tang HM, Pan K, Huang Z, Lee TH, Hinnebusch AG, Jin DY, Wong CM.

Nucleic Acids Res. 2014 Jan;42(1):643-60. doi: 10.1093/nar/gkt888. Epub 2013 Oct 3.


Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae.

Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF.

PLoS Genet. 2014 Apr 10;10(4):e1004249. doi: 10.1371/journal.pgen.1004249. eCollection 2014 Apr.


Modelling reveals kinetic advantages of co-transcriptional splicing.

Aitken S, Alexander RD, Beggs JD.

PLoS Comput Biol. 2011 Oct;7(10):e1002215. doi: 10.1371/journal.pcbi.1002215. Epub 2011 Oct 13.


Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.

GarcĂ­a A, Collin A, Calvo O.

Mol Biol Cell. 2012 Nov;23(21):4297-312. doi: 10.1091/mbc.E12-04-0331. Epub 2012 Sep 12.


Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.

Lewin AS, Thomas J Jr, Tirupati HK.

Mol Cell Biol. 1995 Dec;15(12):6971-8.


Direct observation of single RNA polymerase processing through a single endogenous gene in a living yeast cell.

Treutlein B, Michaelis J.

Angew Chem Int Ed Engl. 2011 Oct 10;50(42):9788-90. doi: 10.1002/anie.201103809. Epub 2011 Jul 26.


Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses.

Davari K, Lichti J, Gallus C, Greulich F, Uhlenhaut NH, Heinig M, Friedel CC, Glasmacher E.

Cell Rep. 2017 Apr 18;19(3):643-654. doi: 10.1016/j.celrep.2017.03.069.


Regulation of elongating RNA polymerase II by forkhead transcription factors in yeast.

Morillon A, O'Sullivan J, Azad A, Proudfoot N, Mellor J.

Science. 2003 Apr 18;300(5618):492-5.

Supplemental Content

Support Center