Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Reciprocal intronic and exonic histone modification regions in humans.

Huff JT, Plocik AM, Guthrie C, Yamamoto KR.

Nat Struct Mol Biol. 2010 Dec;17(12):1495-9. doi: 10.1038/nsmb.1924. Epub 2010 Nov 7.

2.

Differential patterns of intronic and exonic DNA regions with respect to RNA polymerase II occupancy, nucleosome density and H3K36me3 marking in fission yeast.

Wilhelm BT, Marguerat S, Aligianni S, Codlin S, Watt S, Bähler J.

Genome Biol. 2011 Aug 22;12(8):R82. doi: 10.1186/gb-2011-12-8-r82.

3.

Differential chromatin marking of introns and expressed exons by H3K36me3.

Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J.

Nat Genet. 2009 Mar;41(3):376-81. doi: 10.1038/ng.322. Epub 2009 Feb 1.

4.

Contrasting chromatin organization of CpG islands and exons in the human genome.

Choi JK.

Genome Biol. 2010;11(7):R70. doi: 10.1186/gb-2010-11-7-r70. Epub 2010 Jul 5.

5.

H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast.

Shieh GS, Pan CH, Wu JH, Sun YJ, Wang CC, Hsiao WC, Lin CY, Tung L, Chang TH, Fleming AB, Hillyer C, Lo YC, Berger SL, Osley MA, Kao CF.

BMC Genomics. 2011 Dec 22;12:627. doi: 10.1186/1471-2164-12-627.

6.

Histone modifications involved in cassette exon inclusions: a quantitative and interpretable analysis.

Liu H, Jin T, Guan J, Zhou S.

BMC Genomics. 2014 Dec 19;15:1148. doi: 10.1186/1471-2164-15-1148.

7.

Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution.

Dhami P, Saffrey P, Bruce AW, Dillon SC, Chiang K, Bonhoure N, Koch CM, Bye J, James K, Foad NS, Ellis P, Watkins NA, Ouwehand WH, Langford C, Andrews RM, Dunham I, Vetrie D.

PLoS One. 2010 Aug 23;5(8):e12339. doi: 10.1371/journal.pone.0012339.

8.

Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36.

de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J, Levezinho H, Gut M, Eick D, Gut I, Andrau JC, Ferrier P, Carmo-Fonseca M.

Nat Struct Mol Biol. 2011 Jul 26;18(9):977-83. doi: 10.1038/nsmb.2123.

PMID:
21792193
9.

The 5' regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells.

Szenthe K, Koroknai A, Banati F, Bathori Z, Lozsa R, Burgyan J, Wolf H, Salamon D, Nagy K, Niller HH, Minarovits J.

Biochem Biophys Res Commun. 2013 Apr 19;433(4):489-95. doi: 10.1016/j.bbrc.2013.03.022. Epub 2013 Mar 23.

PMID:
23528241
10.

Epigenetic regulation of CIITA expression in human T-cells.

van Eggermond MC, Boom DR, Klous P, Schooten E, Marquez VE, Wierda RJ, Holling TM, van den Elsen PJ.

Biochem Pharmacol. 2011 Nov 15;82(10):1430-7. doi: 10.1016/j.bcp.2011.05.026. Epub 2011 Jun 2.

PMID:
21664896
11.

Nucleosome positioning as a determinant of exon recognition.

Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J, Guigó R.

Nat Struct Mol Biol. 2009 Sep;16(9):996-1001. doi: 10.1038/nsmb.1658.

PMID:
19684599
12.

Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms.

Zhou HL, Luo G, Wise JA, Lou H.

Nucleic Acids Res. 2014 Jan;42(2):701-13. doi: 10.1093/nar/gkt875. Epub 2013 Sep 29. Review.

13.

Chromatin and splicing.

Haque N, Oberdoerffer S.

Methods Mol Biol. 2014;1126:97-113. doi: 10.1007/978-1-62703-980-2_7.

PMID:
24549658
14.

The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.

Nie Y, Liu H, Sun X.

PLoS One. 2013;8(3):e60002. doi: 10.1371/journal.pone.0060002. Epub 2013 Mar 19.

15.

Promoter-like epigenetic signatures in exons displaying cell type-specific splicing.

Curado J, Iannone C, Tilgner H, Valcárcel J, Guigó R.

Genome Biol. 2015 Oct 23;16:236. doi: 10.1186/s13059-015-0797-8. Erratum in: Genome Biol. 2016;17(1):52.

16.

Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing.

Schor IE, Rascovan N, Pelisch F, Alló M, Kornblihtt AR.

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4325-30. doi: 10.1073/pnas.0810666106. Epub 2009 Feb 26.

17.

DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.

Gelfman S, Cohen N, Yearim A, Ast G.

Genome Res. 2013 May;23(5):789-99. doi: 10.1101/gr.143503.112. Epub 2013 Mar 15.

18.

Nucleosomes are well positioned in exons and carry characteristic histone modifications.

Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J.

Genome Res. 2009 Oct;19(10):1732-41. doi: 10.1101/gr.092353.109. Epub 2009 Aug 17.

19.

Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing.

Schwartz S, Ast G.

EMBO J. 2010 May 19;29(10):1629-36. doi: 10.1038/emboj.2010.71. Epub 2010 Apr 20.

20.

Nucleosomes are preferentially positioned at exons in somatic and sperm cells.

Nahkuri S, Taft RJ, Mattick JS.

Cell Cycle. 2009 Oct 15;8(20):3420-4. Epub 2009 Oct 25.

PMID:
19823040

Supplemental Content

Support Center