Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 163

2.
3.
4.

Optical model for multilayer structures with coherent, partly coherent and incoherent layers.

Santbergen R, Smets AH, Zeman M.

Opt Express. 2013 Mar 11;21 Suppl 2:A262-7. doi: 10.1364/OE.21.00A262.

PMID:
23482288
5.

Determination of the SiO(2)/Si interface roughness by diffuse reflectance measurements.

Roos A, Bergkvist M, Ribbing CG.

Appl Opt. 1988 Nov 15;27(22):4660-3. doi: 10.1364/AO.27.004660.

PMID:
20539631
6.

Determination of the SiO(2)/Si interface roughness by diffuse reflectance measurements.

Roos A, Bergkvist M, Ribbing CG.

Appl Opt. 1988 Oct 15;27(20):4314-7. doi: 10.1364/AO.27.004314.

PMID:
20539560
7.

Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference.

Troparevsky MC, Sabau AS, Lupini AR, Zhang Z.

Opt Express. 2010 Nov 22;18(24):24715-21. doi: 10.1364/OE.18.024715.

PMID:
21164818
8.

Reflection and transmission calculations in a multilayer structure with coherent, incoherent, and partially coherent interference, using the transmission line method.

Stathopoulos NA, Savaidis SP, Botsialas A, Ioannidis ZC, Georgiadou DG, Vasilopoulou M, Pagiatakis G.

Appl Opt. 2015 Feb 20;54(6):1492-504. doi: 10.1364/AO.54.001492.

PMID:
25968218
10.

Infrared optical constants and roughness factor functions determination: the H(T)H(R)TR method.

Gunde MK, Aleksandrov B.

Appl Opt. 1991 Aug 1;30(22):3186-96. doi: 10.1364/AO.30.003186.

PMID:
20706373
11.

A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length.

Lee W, Lee SY, Kim J, Kim SC, Lee B.

Opt Express. 2012 Nov 5;20 Suppl 6:A941-53. doi: 10.1364/OE.20.00A941.

PMID:
23187671
12.

A numerical analysis of the effect of partially-coherent light in photovoltaic devices considering coherence length.

Lee W, Lee SY, Kim J, Kim SC, Lee B.

Opt Express. 2012 Nov 5;20(23):A941-53.

PMID:
23326842
13.
15.

Diffuse reflectance and transmittance spectra of an interference layer. 2. Evaluation of tin oxide-coated glass.

Rönnow D, Roos A.

Appl Opt. 1994 Dec 1;33(34):7918-27. doi: 10.1364/AO.33.007918.

PMID:
20963006
16.

Diffuse reflectance and transmittance spectra of an interference layer: 1. Model formulation and properties.

Roos A, Rönnow D.

Appl Opt. 1994 Dec 1;33(34):7908-17. doi: 10.1364/AO.33.007908.

PMID:
20963005
17.

Electrically tunable coherent optical absorption in graphene with ion gel.

Thareja V, Kang JH, Yuan H, Milaninia KM, Hwang HY, Cui Y, Kik PG, Brongersma ML.

Nano Lett. 2015 Mar 11;15(3):1570-6. doi: 10.1021/nl503431d. Epub 2015 Feb 25.

PMID:
25671369
18.

Mo/Si and Mo/Be multilayer thin films on Zerodur substrates for extreme-ultraviolet lithography.

Mirkarimi PB, Bajt S, Wall MA.

Appl Opt. 2000 Apr 1;39(10):1617-25.

PMID:
18345060
19.

Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements.

Peng C, Liang R, Erwin JK, Bletscher W, Nagata K, Mansuripur M.

Appl Opt. 2001 Oct 1;40(28):5088-99.

PMID:
18364789
20.

Infrared reflectance-absorbance spectroscopy of thin films formed by forced dewetting of solid-fluid interfaces.

Heier ST, Johnson KE, Mudalige A, Tiani DJ, Reid VR, Pemberton JE.

Anal Chem. 2008 Nov 1;80(21):8012-9. doi: 10.1021/ac801019r. Epub 2008 Oct 1.

PMID:
18826245

Supplemental Content

Support Center