Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus.

Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B.

Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18551-6. doi: 10.1073/pnas.1014023107.

2.

The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae.

Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM.

Mol Microbiol. 2003 Nov;50(3):911-29.

4.

A split-ubiquitin two-hybrid screen for proteins physically interacting with the yeast amino acid transceptor Gap1 and ammonium transceptor Mep2.

Van Zeebroeck G, Kimpe M, Vandormael P, Thevelein JM.

PLoS One. 2011;6(9):e24275. doi: 10.1371/journal.pone.0024275.

5.

Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae.

Torbensen R, Møller HD, Gresham D, Alizadeh S, Ochmann D, Boles E, Regenberg B.

PLoS One. 2012;7(7):e41272. doi: 10.1371/journal.pone.0041272.

6.

Systematic mutational analysis of the intracellular regions of yeast Gap1 permease.

Merhi A, Gérard N, Lauwers E, Prévost M, André B.

PLoS One. 2011 Apr 19;6(4):e18457. doi: 10.1371/journal.pone.0018457.

7.

Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae.

Kodama Y, Omura F, Takahashi K, Shirahige K, Ashikari T.

Curr Genet. 2002 May;41(2):63-72.

PMID:
12073087
8.
9.

The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner.

Pfannmüller A, Wagner D, Sieber C, Schönig B, Boeckstaens M, Marini AM, Tudzynski B.

PLoS One. 2015 Apr 24;10(4):e0125487. doi: 10.1371/journal.pone.0125487.

11.

Stress conditions promote yeast Gap1 permease ubiquitylation and down-regulation via the arrestin-like Bul and Aly proteins.

Crapeau M, Merhi A, André B.

J Biol Chem. 2014 Aug 8;289(32):22103-16. doi: 10.1074/jbc.M114.582320.

12.

AUA1, a gene involved in ammonia regulation of amino acid transport in Saccharomyces cerevisiae.

Sophianopoulou V, Diallinas G.

Mol Microbiol. 1993 Apr;8(1):167-78.

PMID:
8497191
13.
14.

Formation of Extrachromosomal Circular DNA from Long Terminal Repeats of Retrotransposons in Saccharomyces cerevisiae.

Møller HD, Larsen CE, Parsons L, Hansen AJ, Regenberg B, Mourier T.

G3 (Bethesda). 2015 Dec 17;6(2):453-62. doi: 10.1534/g3.115.025858.

15.

Extrachromosomal circular DNA is common in yeast.

Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B.

Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3114-22. doi: 10.1073/pnas.1508825112.

16.

Urmylation controls Nil1p and Gln3p-dependent expression of nitrogen-catabolite repressed genes in Saccharomyces cerevisiae.

Rubio-Texeira M.

FEBS Lett. 2007 Feb 6;581(3):541-50. Erratum in: FEBS Lett. 2007 Mar 6;581(5):1079.

17.

The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.

Chiva R, Baiges I, Mas A, Guillamon JM.

J Appl Microbiol. 2009 Jul;107(1):235-44. doi: 10.1111/j.1365-2672.2009.04201.x.

18.
20.

Repression of nitrogen catabolic genes by ammonia and glutamine in nitrogen-limited continuous cultures of Saccharomyces cerevisiae.

ter Schure EG, Silljé HH, Vermeulen EE, Kalhorn JW, Verkleij AJ, Boonstra J, Verrips CT.

Microbiology. 1998 May;144 ( Pt 5):1451-62.

PMID:
9611819

Supplemental Content

Support Center