Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 193

1.

pH-responsive polymeric micelle carriers for siRNA drugs.

Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, Stayton PS.

Biomacromolecules. 2010 Nov 8;11(11):2904-11. doi: 10.1021/bm100652w. Epub 2010 Oct 1.

2.

Development of a novel endosomolytic diblock copolymer for siRNA delivery.

Convertine AJ, Benoit DS, Duvall CL, Hoffman AS, Stayton PS.

J Control Release. 2009 Feb 10;133(3):221-9. doi: 10.1016/j.jconrel.2008.10.004. Epub 2008 Oct 17.

3.

Neutral polymeric micelles for RNA delivery.

Lundy BB, Convertine A, Miteva M, Stayton PS.

Bioconjug Chem. 2013 Mar 20;24(3):398-407. doi: 10.1021/bc300486k. Epub 2013 Feb 22.

4.

pH-responsive polymeric sirna carriers sensitize multidrug resistant ovarian cancer cells to doxorubicin via knockdown of polo-like kinase 1.

Benoit DS, Henry SM, Shubin AD, Hoffman AS, Stayton PS.

Mol Pharm. 2010 Apr 5;7(2):442-55. doi: 10.1021/mp9002255.

5.

Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

Keller S, Wilson JT, Patilea GI, Kern HB, Convertine AJ, Stayton PS.

J Control Release. 2014 Oct 10;191:24-33. doi: 10.1016/j.jconrel.2014.03.041. Epub 2014 Mar 31.

6.

Diblock copolymers with tunable pH transitions for gene delivery.

Manganiello MJ, Cheng C, Convertine AJ, Bryers JD, Stayton PS.

Biomaterials. 2012 Mar;33(7):2301-9. doi: 10.1016/j.biomaterials.2011.11.019. Epub 2011 Dec 12.

7.

Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.

Sevimli S, Sagnella S, Kavallaris M, Bulmus V, Davis TP.

Biomacromolecules. 2013 Nov 11;14(11):4135-49. doi: 10.1021/bm4013088. Epub 2013 Oct 30.

PMID:
24125032
8.

Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

Zhao J, Wang H, Liu J, Deng L, Liu J, Dong A, Zhang J.

Biomacromolecules. 2013 Nov 11;14(11):3973-84. doi: 10.1021/bm401087n. Epub 2013 Oct 29.

PMID:
24107101
9.

Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery.

Benoit DS, Srinivasan S, Shubin AD, Stayton PS.

Biomacromolecules. 2011 Jul 11;12(7):2708-14. doi: 10.1021/bm200485b. Epub 2011 Jun 10.

10.

Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers.

Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, Zhong Z.

Biomaterials. 2010 Mar;31(8):2408-16. doi: 10.1016/j.biomaterials.2009.11.077. Epub 2009 Dec 5.

PMID:
19963269
11.

Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery.

Sun TM, Du JZ, Yan LF, Mao HQ, Wang J.

Biomaterials. 2008 Nov;29(32):4348-55. doi: 10.1016/j.biomaterials.2008.07.036. Epub 2008 Aug 19.

PMID:
18715636
12.

Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy.

Qian J, Xu M, Suo A, Xu W, Liu T, Liu X, Yao Y, Wang H.

Acta Biomater. 2015 Mar;15:102-16. doi: 10.1016/j.actbio.2014.12.018. Epub 2014 Dec 26.

PMID:
25545322
13.

Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy.

Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S.

Bioconjug Chem. 2010 Mar 17;21(3):496-504. doi: 10.1021/bc900422j. Epub 2010 Feb 17.

PMID:
20163170
14.

Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer.

Duvall CL, Convertine AJ, Benoit DS, Hoffman AS, Stayton PS.

Mol Pharm. 2010 Apr 5;7(2):468-76. doi: 10.1021/mp9002267.

15.

Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells.

Suo A, Qian J, Zhang Y, Liu R, Xu W, Wang H.

Mater Sci Eng C Mater Biol Appl. 2016 May;62:564-73. doi: 10.1016/j.msec.2016.02.007. Epub 2016 Feb 5.

PMID:
26952460
16.

Preparation of Polyion Complex Micelles Using Block Copolymers for SiRNA Delivery.

Kim HJ, Zheng M, Miyata K, Kataoka K.

Methods Mol Biol. 2016;1364:89-103. doi: 10.1007/978-1-4939-3112-5_9.

PMID:
26472445
17.

Effects of the incorporation of a hydrophobic middle block into a PEG-polycation diblock copolymer on the physicochemical and cell interaction properties of the polymer-DNA complexes.

Sharma R, Lee JS, Bettencourt RC, Xiao C, Konieczny SF, Won YY.

Biomacromolecules. 2008 Nov;9(11):3294-307. doi: 10.1021/bm800876v. Epub 2008 Oct 23.

18.

Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent.

Yusa S, Fukuda K, Yamamoto T, Ishihara K, Morishima Y.

Biomacromolecules. 2005 Mar-Apr;6(2):663-70.

PMID:
15762627
19.

siRNA-Loaded Polyion Complex Micelle Decorated with Charge-Conversional Polymer Tuned to Undergo Stepwise Response to Intra-Tumoral and Intra-Endosomal pHs for Exerting Enhanced RNAi Efficacy.

Tangsangasaksri M, Takemoto H, Naito M, Maeda Y, Sueyoshi D, Kim HJ, Miura Y, Ahn J, Azuma R, Nishiyama N, Miyata K, Kataoka K.

Biomacromolecules. 2016 Jan 11;17(1):246-55. doi: 10.1021/acs.biomac.5b01334. Epub 2015 Dec 8.

PMID:
26616636
20.

siRNA delivery from triblock copolymer micelles with spatially-ordered compartments of PEG shell, siRNA-loaded intermediate layer, and hydrophobic core.

Kim HJ, Miyata K, Nomoto T, Zheng M, Kim A, Liu X, Cabral H, Christie RJ, Nishiyama N, Kataoka K.

Biomaterials. 2014 May;35(15):4548-56. doi: 10.1016/j.biomaterials.2014.02.016. Epub 2014 Mar 6.

PMID:
24613051

Supplemental Content

Support Center