Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Temporal phase-unwrapping algorithm for automated interferogram analysis.

Huntley JM, Saldner H.

Appl Opt. 1993 Jun 10;32(17):3047-52. doi: 10.1364/AO.32.003047.

PMID:
20829910
2.

Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities.

Weng JF, Lo YL.

Opt Express. 2012 May 7;20(10):10896-920. doi: 10.1364/OE.20.010896.

PMID:
22565715
3.

Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization.

Chen CW, Zebker HA.

J Opt Soc Am A Opt Image Sci Vis. 2001 Feb;18(2):338-51.

PMID:
11205980
4.

Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising.

Huang HY, Tian L, Zhang Z, Liu Y, Chen Z, Barbastathis G.

Opt Express. 2012 Jun 18;20(13):14075-89. doi: 10.1364/OE.20.014075.

PMID:
22714472
5.

Robust detection scheme on noise and phase jump for phase maps of objects with height discontinuities--theory and experiment.

Weng JF, Lo YL.

Opt Express. 2011 Feb 14;19(4):3086-105. doi: 10.1364/OE.19.003086.

PMID:
21369131
6.

Temporal phase unwrapping: application to surface profiling of discontinuous objects.

Saldner HO, Huntley JM.

Appl Opt. 1997 May 1;36(13):2770-5.

PMID:
18253268
7.

Proposed algorithm for phase unwrapping.

He XY, Kang X, Tay CJ, Quan C, Shang HM.

Appl Opt. 2002 Dec 10;41(35):7422-8.

PMID:
12502299
8.

A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

Langley J, Zhao Q.

Phys Med Biol. 2009 Sep 7;54(17):5237-52. doi: 10.1088/0031-9155/54/17/011. Epub 2009 Aug 11.

PMID:
19671967
9.
10.

Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm.

Kemao Q, Gao W, Wang H.

Appl Opt. 2008 Oct 10;47(29):5420-8.

PMID:
18846184
11.

Unwrapping magnetic resonance phase maps with Chebyshev polynomials.

Langley J, Zhao Q.

Magn Reson Imaging. 2009 Nov;27(9):1293-301. doi: 10.1016/j.mri.2009.05.013. Epub 2009 Jul 1.

PMID:
19574009
12.

Recursive approach to the moment-based phase unwrapping method.

Langley JA, Brice RG, Zhao Q.

Appl Opt. 2010 Jun 1;49(16):3096-101. doi: 10.1364/AO.49.003096.

PMID:
20517381
13.

Disk-growing algorithm for phase-map unwrapping: application to speckle interferograms.

De Veuster C, Slangen P, Renotte Y, Berwart L, Lion Y.

Appl Opt. 1996 Jan 10;35(2):240-7. doi: 10.1364/AO.35.000240.

PMID:
21069005
14.

Phase reconstruction and unwrapping from holographic interferograms of partially absorbent phase objects.

Vandenhouten R, Grebe R.

Appl Opt. 1995 Mar 10;34(8):1401-6. doi: 10.1364/AO.34.001401.

PMID:
21037675
15.

Unwrapping of interferometric phase-fringe maps by the discrete cosine transform.

Kerr D, Kaufmann GH, Galizzi GE.

Appl Opt. 1996 Feb 10;35(5):810-6. doi: 10.1364/AO.35.000810.

PMID:
21069074
16.

High-speed dynamic speckle interferometry: phase errors due to intensity, velocity, and speckle decorrelation.

Davila A, Huntley JM, Kaufmann GH, Kerr D.

Appl Opt. 2005 Jul 1;44(19):3954-62.

PMID:
16004040
17.

Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm.

Buckland JR, Huntley JM, Turner SR.

Appl Opt. 1995 Aug 10;34(23):5100-8. doi: 10.1364/AO.34.005100.

PMID:
21052355
18.

Robust phase-unwrapping algorithm with a spatial binary-tree image decomposition.

Hardie RC, Younus MI, Blackshire J.

Appl Opt. 1998 Jul 10;37(20):4468-76.

PMID:
18285898
19.

Spatiotemporal three-dimensional phase unwrapping in digital speckle pattern interferometry.

Wu S, Zhu L, Pan S, Yang L.

Opt Lett. 2016 Mar 1;41(5):1050-3. doi: 10.1364/OL.41.001050.

PMID:
26974113
20.

Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms.

Chen CW, Zebker HA.

J Opt Soc Am A Opt Image Sci Vis. 2000 Mar;17(3):401-14. Erratum in: J Opt Soc Am A Opt Image Sci Vis 2001 May;18(5):1192.

PMID:
10708020

Supplemental Content

Support Center