Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 51

1.

Single-molecule binding experiments on long time scales.

Elenko MP, Szostak JW, van Oijen AM.

Rev Sci Instrum. 2010 Aug;81(8):083705. doi: 10.1063/1.3473936.

2.

Biotin-avidin binding kinetics measured by single-molecule imaging.

Wayment JR, Harris JM.

Anal Chem. 2009 Jan 1;81(1):336-42. doi: 10.1021/ac801818t.

PMID:
19117461
3.

Aptamers with fluorescence-signaling properties.

Nutiu R, Li Y.

Methods. 2005 Sep;37(1):16-25. Epub 2005 Sep 29. Review.

PMID:
16199173
4.

Decreasing photobleaching by silver nanoparticles on metal surfaces: application to muscle myofibrils.

Muthu P, Gryczynski I, Gryczynski Z, Talent JM, Akopova I, Borejdo J.

J Biomed Opt. 2008 Jan-Feb;13(1):014023. doi: 10.1117/1.2854120.

PMID:
18315381
5.
6.

Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution.

Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T.

Nature. 1995 Apr 6;374(6522):555-9.

PMID:
7700383
7.

Single-molecule imaging of an in vitro-evolved RNA aptamer reveals homogeneous ligand binding kinetics.

Elenko MP, Szostak JW, van Oijen AM.

J Am Chem Soc. 2009 Jul 29;131(29):9866-7. doi: 10.1021/ja901880v.

8.

Silica colloidal crystals as porous substrates for total internal reflection fluorescence microscopy of live cells.

Velarde TR, Wirth MJ.

Appl Spectrosc. 2008 Jun;62(6):611-6. doi: 10.1366/000370208784657986.

PMID:
18559147
9.

Rebinding of IgE Fabs at haptenated planar membranes: measurement by total internal reflection with fluorescence photobleaching recovery.

Lagerholm BC, Starr TE, Volovyk ZN, Thompson NL.

Biochemistry. 2000 Feb 29;39(8):2042-51.

PMID:
10684654
10.

Improved method for counting DNA molecules on biofunctionalized nanoparticles.

Delport F, Deres A, Hotta J, Pollet J, Verbruggen B, Sels B, Hofkens J, Lammertyn J.

Langmuir. 2010 Feb 2;26(3):1594-7. doi: 10.1021/la904702j.

PMID:
20050609
11.

Visualization of Rab3A dissociation during exocytosis: a study by total internal reflection microscopy.

Lin CC, Huang CC, Lin KH, Cheng KH, Yang DM, Tsai YS, Ong RY, Huang YN, Kao LS.

J Cell Physiol. 2007 May;211(2):316-26.

PMID:
17149709
12.

Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin.

Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T.

Cell. 1998 Jan 23;92(2):161-71.

13.

Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy.

Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T.

Biochem Biophys Res Commun. 1997 Jun 9;235(1):47-53.

PMID:
9196033
14.

Laminar flow cells for single-molecule studies of DNA-protein interactions.

Brewer LR, Bianco PR.

Nat Methods. 2008 Jun;5(6):517-25. doi: 10.1038/nmeth.1217.

PMID:
18511919
15.

Electron transfer reaction in a single protein molecule observed by total internal reflection fluorescence microscopy.

Furukawa Y, Ban T, Hamada D, Ishimori K, Goto Y, Morishima I.

J Am Chem Soc. 2005 Feb 23;127(7):2098-103.

PMID:
15713086
16.

Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers.

Fox CB, Wayment JR, Myers GA, Endicott SK, Harris JM.

Anal Chem. 2009 Jul 1;81(13):5130-8. doi: 10.1021/ac9007682.

PMID:
19480398
19.
20.

Multiple color single molecule TIRF imaging and tracking of MAPs and motors.

Ross JL, Dixit R.

Methods Cell Biol. 2010;95:521-42. doi: 10.1016/S0091-679X(10)95026-7. Review.

PMID:
20466151

Supplemental Content

Support Center