Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation.

Tuch BB, Mitrovich QM, Homann OR, Hernday AD, Monighetti CK, De La Vega FM, Johnson AD.

PLoS Genet. 2010 Aug 19;6(8):e1001070. doi: 10.1371/journal.pgen.1001070.

2.

Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop.

Zordan RE, Galgoczy DJ, Johnson AD.

Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12807-12. Epub 2006 Aug 9.

3.

Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans.

Huang G, Wang H, Chou S, Nie X, Chen J, Liu H.

Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12813-8. Epub 2006 Aug 11.

4.

Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch.

Hernday AD, Lohse MB, Nobile CJ, Noiman L, Laksana CN, Johnson AD.

MBio. 2016 Jan 26;7(1):e01565-15. doi: 10.1128/mBio.01565-15.

5.

The WOR1 5' untranslated region regulates white-opaque switching in Candida albicans by reducing translational efficiency.

Guan Z, Liu H.

Mol Microbiol. 2015 Jul;97(1):125-38. doi: 10.1111/mmi.13014. Epub 2015 Apr 24.

6.

Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans.

Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD.

PLoS Biol. 2007 Oct;5(10):e256.

7.

Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator.

Zhang A, Liu Z, Myers LC.

Eukaryot Cell. 2013 Sep;12(9):1293-304. doi: 10.1128/EC.00137-13. Epub 2013 Jul 19.

8.

SUMOylation of Wor1 by a novel SUMO E3 ligase controls cell fate in Candida albicans.

Yan M, Nie X, Wang H, Gao N, Liu H, Chen J.

Mol Microbiol. 2015 Oct;98(1):69-89. doi: 10.1111/mmi.13108. Epub 2015 Jul 30.

9.

MTL-independent phenotypic switching in Candida tropicalis and a dual role for Wor1 in regulating switching and filamentation.

Porman AM, Hirakawa MP, Jones SK, Wang N, Bennett RJ.

PLoS Genet. 2013 Mar;9(3):e1003369. doi: 10.1371/journal.pgen.1003369. Epub 2013 Mar 21.

10.

Identification and Characterization of Wor4, a New Transcriptional Regulator of White-Opaque Switching.

Lohse MB, Johnson AD.

G3 (Bethesda). 2016 Jan 15;6(3):721-9. doi: 10.1534/g3.115.024885.

11.

Discovery of a "white-gray-opaque" tristable phenotypic switching system in candida albicans: roles of non-genetic diversity in host adaptation.

Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W, Cao C, Zhang Q, Zhong J, Huang G.

PLoS Biol. 2014 Apr 1;12(4):e1001830. doi: 10.1371/journal.pbio.1001830. eCollection 2014 Apr.

12.

Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains.

Lohse MB, Hernday AD, Fordyce PM, Noiman L, Sorrells TR, Hanson-Smith V, Nobile CJ, DeRisi JL, Johnson AD.

Proc Natl Acad Sci U S A. 2013 May 7;110(19):7660-5. doi: 10.1073/pnas.1221734110. Epub 2013 Apr 22.

13.

Motor protein Myo5p is required to maintain the regulatory circuit controlling WOR1 expression in Candida albicans.

Kachurina N, Turcotte B, Whiteway M.

Eukaryot Cell. 2012 May;11(5):626-37. doi: 10.1128/EC.00021-12. Epub 2012 Mar 9.

14.

Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism.

Pande K, Chen C, Noble SM.

Nat Genet. 2013 Sep;45(9):1088-91. doi: 10.1038/ng.2710. Epub 2013 Jul 28.

15.

White-opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex.

Xie J, Tao L, Nobile CJ, Tong Y, Guan G, Sun Y, Cao C, Hernday AD, Johnson AD, Zhang L, Bai FY, Huang G.

PLoS Biol. 2013;11(3):e1001525. doi: 10.1371/journal.pbio.1001525. Epub 2013 Mar 26.

16.

Crystal structure of the WOPR-DNA complex and implications for Wor1 function in white-opaque switching of Candida albicans.

Zhang S, Zhang T, Yan M, Ding J, Chen J.

Cell Res. 2014 Sep;24(9):1108-20. doi: 10.1038/cr.2014.102. Epub 2014 Aug 5.

17.

White-opaque switching in Candida albicans.

Lohse MB, Johnson AD.

Curr Opin Microbiol. 2009 Dec;12(6):650-4. doi: 10.1016/j.mib.2009.09.010. Epub 2009 Oct 23. Review.

18.

N-acetylglucosamine kinase, HXK1 contributes to white-opaque morphological transition in Candida albicans.

Rao KH, Ruhela D, Ghosh S, Abdin MZ, Datta A.

Biochem Biophys Res Commun. 2014 Feb 28;445(1):138-44. doi: 10.1016/j.bbrc.2014.01.123. Epub 2014 Jan 31.

PMID:
24491547
19.

Structure of the transcriptional network controlling white-opaque switching in Candida albicans.

Hernday AD, Lohse MB, Fordyce PM, Nobile CJ, DeRisi JL, Johnson AD.

Mol Microbiol. 2013 Oct;90(1):22-35. doi: 10.1111/mmi.12329. Epub 2013 Aug 25.

20.

Regulation of white-opaque switching in Candida albicans.

Morschhäuser J.

Med Microbiol Immunol. 2010 Aug;199(3):165-72. doi: 10.1007/s00430-010-0147-0. Review.

PMID:
20390300

Supplemental Content

Support Center