Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 201

1.

Resistive switches and memories from silicon oxide.

Yao J, Sun Z, Zhong L, Natelson D, Tour JM.

Nano Lett. 2010 Oct 13;10(10):4105-10. doi: 10.1021/nl102255r.

PMID:
20806916
2.

CMOS compatible nanoscale nonvolatile resistance switching memory.

Jo SH, Lu W.

Nano Lett. 2008 Feb;8(2):392-7. doi: 10.1021/nl073225h. Epub 2008 Jan 25.

PMID:
18217785
3.

Si/a-Si core/shell nanowires as nonvolatile crossbar switches.

Dong Y, Yu G, McAlpine MC, Lu W, Lieber CM.

Nano Lett. 2008 Feb;8(2):386-91. doi: 10.1021/nl073224p. Epub 2008 Jan 26.

PMID:
18220442
4.

Free-carrier absorption modulation in silicon nanocrystal slot waveguides.

Creazzo T, Redding B, Marchena E, Shi S, Prather DW.

Opt Lett. 2010 Nov 1;35(21):3691-3. doi: 10.1364/OL.35.003691.

PMID:
21042393
5.

Graphene oxide thin films for flexible nonvolatile memory applications.

Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff RS, Choi SY.

Nano Lett. 2010 Nov 10;10(11):4381-6. doi: 10.1021/nl101902k. Epub 2010 Oct 4.

PMID:
20919689
6.

Atomic Layer Deposited Oxide-Based Nanocomposite Structures with Embedded CoPtx Nanocrystals for Resistive Random Access Memory Applications.

Wang LG, Cao ZY, Qian X, Zhu L, Cui DP, Li AD, Wu D.

ACS Appl Mater Interfaces. 2017 Feb 22;9(7):6634-6643. doi: 10.1021/acsami.6b16098. Epub 2017 Feb 10.

PMID:
28139921
7.

Effect of needle-like silicon nanosurface on the charge storage characteristics of silicon nanocrystals embedded within silicon nitride matrix.

Jung S, Son H, Kim J, Park DH, Sohn BH, Kim K, Yi J.

J Nanosci Nanotechnol. 2008 Oct;8(10):5004-8.

PMID:
19198379
8.

Multilevel resistive switching in planar graphene/SiO2 nanogap structures.

He C, Shi Z, Zhang L, Yang W, Yang R, Shi D, Zhang G.

ACS Nano. 2012 May 22;6(5):4214-21. doi: 10.1021/nn300735s. Epub 2012 Apr 27.

PMID:
22519726
9.
10.

Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

Kim TW, Choi H, Oh SH, Jo M, Wang G, Cho B, Kim DY, Hwang H, Lee T.

Nanotechnology. 2009 Jan 14;20(2):025201. doi: 10.1088/0957-4484/20/2/025201. Epub 2008 Dec 9.

PMID:
19417263
11.

The structure and optical properties of ZnO nanocrystals embedded in SiO2 fabricated by radio-frequency sputtering.

Mayer G, Fonin M, RĂ¼diger U, Schneider R, Gerthsen D, Janssen N, Bratschitsch R.

Nanotechnology. 2009 Feb 18;20(7):075601. doi: 10.1088/0957-4484/20/7/075601. Epub 2009 Jan 26.

PMID:
19417422
12.

Fabrication and resistive switching characteristics of high compact Ga-doped ZnO nanorod thin film devices.

Yao IC, Lee DY, Tseng TY, Lin P.

Nanotechnology. 2012 Apr 13;23(14):145201. doi: 10.1088/0957-4484/23/14/145201. Epub 2012 Mar 21.

PMID:
22433578
13.

High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires.

Dong H, Zhang X, Zhao D, Niu Z, Zeng Q, Li J, Cai L, Wang Y, Zhou W, Gao M, Xie S.

Nanoscale. 2012 Apr 21;4(8):2571-4. doi: 10.1039/c2nr30133d. Epub 2012 Mar 14.

PMID:
22419367
14.

Near-infrared free-carrier absorption in silicon nanocrystals.

Kekatpure RD, Brongersma ML.

Opt Lett. 2009 Nov 1;34(21):3397-9. doi: 10.1364/OL.34.003397.

PMID:
19881606
15.

Titanium-tungsten nanocrystals embedded in a SiO(2)/Al(2)O(3) gate dielectric stack for low-voltage operation in non-volatile memory.

Yang S, Wang Q, Zhang M, Long S, Liu J, Liu M.

Nanotechnology. 2010 Jun 18;21(24):245201. doi: 10.1088/0957-4484/21/24/245201. Epub 2010 May 25.

PMID:
20498524
16.

High-density crossbar arrays based on a Si memristive system.

Jo SH, Kim KH, Lu W.

Nano Lett. 2009 Feb;9(2):870-4. doi: 10.1021/nl8037689.

PMID:
19206536
17.

Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies.

Yao J, Zhong L, Natelson D, Tour JM.

J Am Chem Soc. 2011 Feb 2;133(4):941-8. doi: 10.1021/ja108277r. Epub 2010 Dec 22.

PMID:
21175171
18.

Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application.

Yang YC, Pan F, Liu Q, Liu M, Zeng F.

Nano Lett. 2009 Apr;9(4):1636-43. doi: 10.1021/nl900006g.

PMID:
19271714
19.

Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate.

Lin GR, Lian CW, Wu CL, Lin YH.

Opt Express. 2010 Apr 26;18(9):9213-9. doi: 10.1364/OE.18.009213.

PMID:
20588768
20.

Memory effect of an organic based trilayer structure with Au nanocrystals in an insulating polymer matrix.

Lee PF, Dai JY.

Nanotechnology. 2010 Jul 23;21(29):295706. doi: 10.1088/0957-4484/21/29/295706. Epub 2010 Jul 5.

PMID:
20601757

Supplemental Content

Support Center