Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID.

Bhaumik SR.

Biochim Biophys Acta. 2011 Feb;1809(2):97-108. doi: 10.1016/j.bbagrm.2010.08.009. Epub 2010 Aug 26. Review.

2.
3.

The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation.

Saint M, Sawhney S, Sinha I, Singh RP, Dahiya R, Thakur A, Siddharthan R, Natarajan K.

Mol Cell Biol. 2014 May;34(9):1547-63. doi: 10.1128/MCB.01060-13. Epub 2014 Feb 18. Erratum in: Mol Cell Biol. 2017 Jul 14;37(15):.

4.

Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.

Kulesza CA, Van Buskirk HA, Cole MD, Reese JC, Smith MM, Engel DA.

Oncogene. 2002 Feb 21;21(9):1411-22.

5.

Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA.

Zhang H, Kruk JA, Reese JC.

J Biol Chem. 2008 Oct 10;283(41):27360-8. doi: 10.1074/jbc.M803831200. Epub 2008 Aug 5.

6.

An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

Walker AK, Shi Y, Blackwell TK.

J Biol Chem. 2004 Apr 9;279(15):15339-47. Epub 2004 Jan 15.

7.

In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA.

Mischerikow N, Spedale G, Altelaar AF, Timmers HT, Pijnappel WW, Heck AJ.

J Proteome Res. 2009 Nov;8(11):5020-30. doi: 10.1021/pr900449e.

PMID:
19731963
8.

Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA.

Klein J, Nolden M, Sanders SL, Kirchner J, Weil PA, Melcher K.

J Biol Chem. 2003 Feb 28;278(9):6779-86. Epub 2002 Dec 24.

9.

Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.

Han Y, Luo J, Ranish J, Hahn S.

EMBO J. 2014 Nov 3;33(21):2534-46. doi: 10.15252/embj.201488638. Epub 2014 Sep 12.

10.

Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo.

Uprety B, Sen R, Bhaumik SR.

Mol Cell Biol. 2015 Sep 1;35(17):2947-64. doi: 10.1128/MCB.01524-14. Epub 2015 Jun 22.

11.

SAGA is an essential in vivo target of the yeast acidic activator Gal4p.

Bhaumik SR, Green MR.

Genes Dev. 2001 Aug 1;15(15):1935-45.

12.

Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation.

van Oevelen CJ, van Teeffelen HA, Timmers HT.

Mol Cell Biol. 2005 Jun;25(12):4863-72.

13.

Cluster analysis of mass spectrometry data reveals a novel component of SAGA.

Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, Link AJ.

Mol Cell Biol. 2004 Aug;24(16):7249-59.

14.

Changes in genomewide occupancy of core transcriptional regulators during heat stress.

Zanton SJ, Pugh BF.

Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16843-8. Epub 2004 Nov 17.

15.

TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation.

Papai G, Tripathi MK, Ruhlmann C, Layer JH, Weil PA, Schultz P.

Nature. 2010 Jun 17;465(7300):956-60. doi: 10.1038/nature09080.

16.
17.

Redundant roles for the TFIID and SAGA complexes in global transcription.

Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA.

Nature. 2000 Jun 8;405(6787):701-4.

PMID:
10864329
18.

Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription.

Durso RJ, Fisher AK, Albright-Frey TJ, Reese JC.

Mol Cell Biol. 2001 Nov;21(21):7331-44.

19.

A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID.

Martinez E, Kundu TK, Fu J, Roeder RG.

J Biol Chem. 1998 Sep 11;273(37):23781-5. Erratum in: J Biol Chem 1998 Oct 16;273(42):27755.

20.

Supplemental Content

Support Center