Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Neurogranin and synaptic plasticity balance.

Zhong L, Gerges NZ.

Commun Integr Biol. 2010 Jul;3(4):340-2.

2.

Neurogranin enhances synaptic strength through its interaction with calmodulin.

Zhong L, Cherry T, Bies CE, Florence MA, Gerges NZ.

EMBO J. 2009 Oct 7;28(19):3027-39. doi: 10.1038/emboj.2009.236. Epub 2009 Aug 27.

3.

Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.

MacDonald JF, Jackson MF, Beazely MA.

Crit Rev Neurobiol. 2006;18(1-2):71-84. Review.

PMID:
17725510
4.
5.

Neurogranin restores amyloid ╬▓-mediated synaptic transmission and long-term potentiation deficits.

Kaleka KS, Gerges NZ.

Exp Neurol. 2016 Mar;277:115-123. doi: 10.1016/j.expneurol.2015.12.013. Epub 2015 Dec 23.

PMID:
26721336
6.

Neurogranin phosphorylation fine-tunes long-term potentiation.

Zhong L, Kaleka KS, Gerges NZ.

Eur J Neurosci. 2011 Jan;33(2):244-50. doi: 10.1111/j.1460-9568.2010.07506.x. Epub 2010 Dec 29.

7.

On the mechanism of synaptic depression induced by CaMKIIN, an endogenous inhibitor of CaMKII.

Gouet C, Aburto B, Vergara C, Sanhueza M.

PLoS One. 2012;7(11):e49293. doi: 10.1371/journal.pone.0049293. Epub 2012 Nov 8.

8.

Role of the neurogranin concentrated in spines in the induction of long-term potentiation.

Zhabotinsky AM, Camp RN, Epstein IR, Lisman JE.

J Neurosci. 2006 Jul 12;26(28):7337-47.

9.
10.

Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice.

Lin N, Pan XD, Chen AQ, Zhu YG, Wu M, Zhang J, Chen XC.

Behav Brain Res. 2014 Jan 1;258:8-18. doi: 10.1016/j.bbr.2013.10.010. Epub 2013 Oct 17.

PMID:
24140565
11.

Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses.

Peng Y, Zhao J, Gu QH, Chen RQ, Xu Z, Yan JZ, Wang SH, Liu SY, Chen Z, Lu W.

Hippocampus. 2010 May;20(5):646-58. doi: 10.1002/hipo.20654.

PMID:
19489005
12.
13.
14.

Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.

Grey KB, Burrell BD.

J Neurophysiol. 2010 May;103(5):2737-46. doi: 10.1152/jn.01112.2009. Epub 2010 Mar 24.

15.

Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.

Asrar S, Zhou Z, Ren W, Jia Z.

PLoS One. 2009;4(2):e4339. doi: 10.1371/journal.pone.0004339. Epub 2009 Feb 3.

16.

Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: a study with knockout mice.

Pak JH, Huang FL, Li J, Balschun D, Reymann KG, Chiang C, Westphal H, Huang KP.

Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11232-7.

17.

Molecular mechanisms that underlie structural and functional changes at the postsynaptic membrane during synaptic plasticity.

Wheal HV, Chen Y, Mitchell J, Schachner M, Maerz W, Wieland H, Van Rossum D, Kirsch J.

Prog Neurobiol. 1998 Aug;55(6):611-40. Review.

PMID:
9670221
18.
19.

Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels.

Aksoy-Aksel A, Manahan-Vaughan D.

Neuroscience. 2015 Nov 19;309:191-9. doi: 10.1016/j.neuroscience.2015.03.014. Epub 2015 Mar 17.

20.

An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation.

Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA, Waxham MN.

Nature. 1989 Aug 17;340(6234):554-7.

PMID:
2549423

Supplemental Content

Support Center