Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Wave-front reconstruction using a Shack-Hartmann sensor.

Lane RG, Tallon M.

Appl Opt. 1992 Nov 10;31(32):6902-8. doi: 10.1364/AO.31.006902.

PMID:
20733929
2.

Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor.

Liang J, Grimm B, Goelz S, Bille JF.

J Opt Soc Am A Opt Image Sci Vis. 1994 Jul;11(7):1949-57.

PMID:
8071736
3.

A fast modal wave-front sensor.

Ribak E, Ebstein S.

Opt Express. 2001 Jul 30;9(3):152-7.

PMID:
19421284
4.
5.

Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.

Salmon TO, Thibos LN, Bradley A.

J Opt Soc Am A Opt Image Sci Vis. 1998 Sep;15(9):2457-65.

PMID:
9729857
6.

Variational solution for modal wave-front projection functions of minimum-error norm.

Solomon CJ, Loos GC, Rios S.

J Opt Soc Am A Opt Image Sci Vis. 2001 Jul;18(7):1519-22.

PMID:
11444543
7.

Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.

Mansell JD, Hennawi J, Gustafson EK, Fejer MM, Byer RL, Clubley D, Yoshida S, Reitze DH.

Appl Opt. 2001 Jan 20;40(3):366-74.

PMID:
18357010
8.

Statistical variation of aberration structure and image quality in a normal population of healthy eyes.

Thibos LN, Hong X, Bradley A, Cheng X.

J Opt Soc Am A Opt Image Sci Vis. 2002 Dec;19(12):2329-48.

PMID:
12469728
9.

Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor.

Dayton D, Pierson B, Spielbusch B, Gonglewski J.

Opt Lett. 1992 Dec 15;17(24):1737-9.

PMID:
19798300
10.

Wave-front sensing from subdivision of the focal plane with a lenslet array.

Clare RM, Lane RG.

J Opt Soc Am A Opt Image Sci Vis. 2005 Jan;22(1):117-25.

PMID:
15669622
11.

Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor.

Hauri CP, Biegert J, Keller U, Schaefer B, Mann K, Marowski G.

Opt Lett. 2005 Jun 15;30(12):1563-5.

PMID:
16007808
12.

Misalignment effects of the Shack-Hartmann sensor.

Pfund J, Lindlein N, Schwider J.

Appl Opt. 1998 Jan 1;37(1):22-7.

PMID:
18268555
13.

Shack Hartmann wave-front measurement with a large F-number plastic microlens array.

Yoon GY, Jitsuno T, Nakatsuka M, Nakai S.

Appl Opt. 1996 Jan 1;35(1):188-92. doi: 10.1364/AO.35.000188.

PMID:
21068997
14.

Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor.

Nirmaier T, Pudasaini G, Bille J.

Opt Express. 2003 Oct 20;11(21):2704-16.

PMID:
19471385
15.
16.
17.

Hartmann wave-front scanner.

Laude V, Olivier S, Dirson C, Huignard JP.

Opt Lett. 1999 Dec 15;24(24):1796-8.

PMID:
18079934
18.

Determination of phase mode components in terms of local wave-front slopes: an analytical approach.

Acosta E, Bará S, Rama MA, Ríos S.

Opt Lett. 1995 May 15;20(10):1083-5.

PMID:
19859432
19.

Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm.

Dayton D, Sandven S, Gonglewski J, Browne S, Rogers S, McDermott S.

Opt Express. 1997 Nov 24;1(11):338-46.

PMID:
19377554
20.

Closed-loop experimental validation of the spatially filtered Shack-Hartmann concept.

Fusco T, Petit C, Rousset G, Conan JM, Beuzit JL.

Opt Lett. 2005 Jun 1;30(11):1255-7.

PMID:
15981498

Supplemental Content

Support Center