Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Quantitative proteomic analyses of influenza virus-infected cultured human lung cells.

Coombs KM, Berard A, Xu W, Krokhin O, Meng X, Cortens JP, Kobasa D, Wilkins J, Brown EG.

J Virol. 2010 Oct;84(20):10888-906. doi: 10.1128/JVI.00431-10. Epub 2010 Aug 11.

2.

Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines.

Vester D, Rapp E, Gade D, Genzel Y, Reichl U.

Proteomics. 2009 Jun;9(12):3316-27. doi: 10.1002/pmic.200800893.

PMID:
19504497
3.

A quantitative proteomic analysis of lung epithelial (A549) cells infected with 2009 pandemic influenza A virus using stable isotope labelling with amino acids in cell culture.

Dove BK, Surtees R, Bean TJ, Munday D, Wise HM, Digard P, Carroll MW, Ajuh P, Barr JN, Hiscox JA.

Proteomics. 2012 May;12(9):1431-6. doi: 10.1002/pmic.201100470. Epub 2012 May 14.

PMID:
22585751
4.

Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study.

Kroeker AL, Ezzati P, Halayko AJ, Coombs KM.

J Proteome Res. 2012 Aug 3;11(8):4132-46. doi: 10.1021/pr300239r. Epub 2012 Jul 2.

5.

Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection.

Dapat C, Saito R, Suzuki H, Horigome T.

Virus Res. 2014 Jan 22;179:53-63. doi: 10.1016/j.virusres.2013.11.012. Epub 2013 Nov 27.

PMID:
24291252
6.

HeLa cell response proteome alterations induced by mammalian reovirus T3D infection.

Coombs KM.

Virol J. 2013 Jun 21;10:202. doi: 10.1186/1743-422X-10-202.

7.

Alteration of protein levels during influenza virus H1N1 infection in host cells: a proteomic survey of host and virus reveals differential dynamics.

Kummer S, Flöttmann M, Schwanhäusser B, Sieben C, Veit M, Selbach M, Klipp E, Herrmann A.

PLoS One. 2014 Apr 9;9(4):e94257. doi: 10.1371/journal.pone.0094257. eCollection 2014.

8.

Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus.

Wu X, Wang S, Yu Y, Zhang J, Sun Z, Yan Y, Zhou J.

Proteomics. 2013 Nov;13(22):3309-26. doi: 10.1002/pmic.201300180. Epub 2013 Oct 25.

PMID:
24115376
9.

Quantification of the host response proteome after mammalian reovirus T1L infection.

Berard AR, Cortens JP, Krokhin O, Wilkins JA, Severini A, Coombs KM.

PLoS One. 2012;7(12):e51939. doi: 10.1371/journal.pone.0051939. Epub 2012 Dec 11.

10.

Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus-infected cells.

Emmott E, Wise H, Loucaides EM, Matthews DA, Digard P, Hiscox JA.

J Proteome Res. 2010 Oct 1;9(10):5335-45. doi: 10.1021/pr100593g.

PMID:
20701360
11.

Quantitative proteomics by amino acid labeling in foot-and-mouth disease virus (FMDV)-infected cells.

Ye Y, Yan G, Luo Y, Tong T, Liu X, Xin C, Liao M, Fan H.

J Proteome Res. 2013 Jan 4;12(1):363-77. doi: 10.1021/pr300611e. Epub 2012 Nov 29.

PMID:
23170859
12.

Quantitative Proteomic Analysis of Enriched Nuclear Fractions from BK Polyomavirus-Infected Primary Renal Proximal Tubule Epithelial Cells.

Justice JL, Verhalen B, Kumar R, Lefkowitz EJ, Imperiale MJ, Jiang M.

J Proteome Res. 2015 Oct 2;14(10):4413-24. doi: 10.1021/acs.jproteome.5b00737. Epub 2015 Sep 23.

13.

Influenza A infection of primary human airway epithelial cells up-regulates proteins related to purine metabolism and ubiquitin-related signaling.

Kroeker AL, Ezzati P, Coombs KM, Halayko AJ.

J Proteome Res. 2013 Jul 5;12(7):3139-51. doi: 10.1021/pr400464p. Epub 2013 Jun 21.

PMID:
23750822
14.

Mitochondrial proteomic analysis of human host cells infected with H3N2 swine influenza virus.

Wu X, Wang H, Bai L, Yu Y, Sun Z, Yan Y, Zhou J.

J Proteomics. 2013 Oct 8;91:136-50. doi: 10.1016/j.jprot.2013.06.037. Epub 2013 Jul 12.

PMID:
23856606
15.

Proteasomal serine hydrolases are up-regulated by and required for influenza virus infection.

Shahiduzzaman M, Ezatti P, Xin G, Coombs KM.

J Proteome Res. 2014 May 2;13(5):2223-38. doi: 10.1021/pr5001779. Epub 2014 Apr 7.

PMID:
24669782
16.

Proteomic analysis at the subcellular level for host targets against influenza A virus (H1N1).

Zhao H, Yang J, Li K, Ding X, Lin R, Ma Y, Liu J, Zhong Z, Qian X, Bo X, Zhou Z, Wang S.

Antiviral Res. 2013 Dec;100(3):673-87. doi: 10.1016/j.antiviral.2013.10.005. Epub 2013 Oct 22.

PMID:
24161511
17.

Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells.

Ma YJ, Yang J, Fan XL, Zhao HB, Hu W, Li ZP, Yu GC, Ding XR, Wang JZ, Bo XC, Zheng XF, Zhou Z, Wang SQ.

J Cell Mol Med. 2012 Oct;16(10):2539-46. doi: 10.1111/j.1582-4934.2012.01572.x.

18.

Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics.

Qi W, Tian J, Su S, Huang L, Li H, Liao M.

Proteomics. 2015 May;15(9):1512-24. doi: 10.1002/pmic.201400309. Epub 2015 Mar 11.

PMID:
25641917
19.

H5N1 virus causes significant perturbations in host proteome very early in influenza virus-infected primary human monocyte-derived macrophages.

Cheung CY, Chan EY, Krasnoselsky A, Purdy D, Navare AT, Bryan JT, Leung CK, Hui KP, Peiris JS, Katze MG.

J Infect Dis. 2012 Sep 1;206(5):640-5. doi: 10.1093/infdis/jis423. Epub 2012 Jul 20.

20.

Proteome alterations in primary human alveolar macrophages in response to influenza A virus infection.

Liu L, Zhou J, Wang Y, Mason RJ, Funk CJ, Du Y.

J Proteome Res. 2012 Aug 3;11(8):4091-101. doi: 10.1021/pr3001332. Epub 2012 Jul 5.

Supplemental Content

Support Center