Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

RhoA and RhoC are both required for the ROCK II-dependent promotion of centrosome duplication.

Kanai M, Crowe MS, Zheng Y, Vande Woude GF, Fukasawa K.

Oncogene. 2010 Nov 11;29(45):6040-50. doi: 10.1038/onc.2010.328.

2.

Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication.

Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K.

Mol Cell Biol. 2006 Dec;26(23):9016-34.

3.

Activated ROCK II by-passes the requirement of the CDK2 activity for centrosome duplication and amplification.

Hanashiro K, Brancaccio M, Fukasawa K.

Oncogene. 2011 May 12;30(19):2188-97. doi: 10.1038/onc.2010.607.

PMID:
21242972
4.

A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells.

Wang L, Yang L, Luo Y, Zheng Y.

J Biol Chem. 2003 Nov 7;278(45):44617-25.

5.

Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication.

Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K.

Cell. 2000 Sep 29;103(1):127-40.

6.

Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication.

Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K.

J Biol Chem. 2001 Jun 15;276(24):21529-37.

8.

XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC.

Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K.

J Biol Chem. 2002 Nov 8;277(45):42964-72.

9.

Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility.

Königs V, Jennings R, Vogl T, Horsthemke M, Bachg AC, Xu Y, Grobe K, Brakebusch C, Schwab A, Bähler M, Knaus UG, Hanley PJ.

J Biol Chem. 2014 Oct 31;289(44):30772-84. doi: 10.1074/jbc.M114.563270.

10.

The role of nucleophosmin in centrosome duplication.

Okuda M.

Oncogene. 2002 Sep 9;21(40):6170-4. Review.

11.

Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer.

Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H.

Clin Cancer Res. 2003 Jul;9(7):2632-41.

12.

Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB.

Hutchinson CL, Lowe PN, McLaughlin SH, Mott HR, Owen D.

Biochemistry. 2013 Nov 12;52(45):7999-8011. doi: 10.1021/bi401216w.

PMID:
24128008
13.

ROCK I-mediated activation of NF-kappaB by RhoB.

Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP.

Cell Signal. 2007 Nov;19(11):2361-9.

14.

Rho isoform-specific interaction with IQGAP1 promotes breast cancer cell proliferation and migration.

Casteel DE, Turner S, Schwappacher R, Rangaswami H, Su-Yuo J, Zhuang S, Boss GR, Pilz RB.

J Biol Chem. 2012 Nov 2;287(45):38367-78. doi: 10.1074/jbc.M112.377499.

15.

Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility.

Wheeler AP, Ridley AJ.

Exp Cell Res. 2004 Nov 15;301(1):43-9. Review.

PMID:
15501444
16.
17.

Functional relationship among PLK2, PLK4 and ROCK2 to induce centrosome amplification.

Ling H, Hanashiro K, Luong TH, Benavides L, Fukasawa K.

Cell Cycle. 2015;14(4):544-53. doi: 10.4161/15384101.2014.989121.

18.

Divergence of Rho residue 43 impacts GEF activity.

Sloan CM, Quinn CV, Peters JP, Farley J, Goetzinger C, Wernli M, DeMali KA, Ellerbroek SM.

Small GTPases. 2012 Jan-Mar;3(1):15-22. doi: 10.4161/sgtp.19557.

19.

Rhos and Rho kinases in the rat prostate: their possible functional roles and distributions.

Saito M, Ohmasa F, Shomori K, Dimitriadis F, Ohiwa H, Shimizu S, Tsounapi P, Kinoshita Y, Satoh K.

Mol Cell Biochem. 2011 Dec;358(1-2):207-13. doi: 10.1007/s11010-011-0936-9.

PMID:
21720764
20.

RhoA, RhoB and RhoC have different roles in cancer cell migration.

Ridley AJ.

J Microsc. 2013 Sep;251(3):242-9. doi: 10.1111/jmi.12025. Review.

Supplemental Content

Support Center