Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Genome-wide association studies in pharmacogenomics: successes and lessons.

Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R, Cox NJ, Roden DM.

Pharmacogenet Genomics. 2013 Aug;23(8):383-94. doi: 10.1097/FPC.0b013e32833d7b45. Review.

2.

Pharmacogenomics discovery and implementation in genome-wide association studies era.

Ni X, Zhang W, Huang RS.

Wiley Interdiscip Rev Syst Biol Med. 2013 Jan-Feb;5(1):1-9. doi: 10.1002/wsbm.1199. Review.

3.

A conceptual framework for pharmacodynamic genome-wide association studies in pharmacogenomics.

Wu R, Tong C, Wang Z, Mauger D, Tantisira K, Szefler SJ, Chinchilli VM, Israel E.

Drug Discov Today. 2011 Oct;16(19-20):884-90. doi: 10.1016/j.drudis.2011.09.001. Review.

4.

Chapter 7: Pharmacogenomics.

Karczewski KJ, Daneshjou R, Altman RB.

PLoS Comput Biol. 2012;8(12):e1002817. doi: 10.1371/journal.pcbi.1002817.

5.

Methods for analysis in pharmacogenomics: lessons from the Pharmacogenetics Research Network Analysis Group.

Srinivasan BS, Chen J, Cheng C, Conti D, Duan S, Fridley BL, Gu X, Haines JL, Jorgenson E, Kraja A, Lasky-Su J, Li L, Rodin A, Wang D, Province M, Ritchie MD.

Pharmacogenomics. 2009 Feb;10(2):243-51. doi: 10.2217/14622416.10.2.243. Review.

6.

Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits.

Maranville JC, Cox NJ.

Pharmacogenomics J. 2016 Aug;16(4):388-92. doi: 10.1038/tpj.2015.47.

7.

[Current status of researches in genomic medicine and the guidelines for pharmacogenomics (PGx)].

Kamatani N.

Yakugaku Zasshi. 2011 Feb;131(2):263-8. Review. Japanese.

8.

Conference Scene: The great debate: genome-wide association studies in pharmacogenetics research, good or bad?

Bailey KR, Cheng C.

Pharmacogenomics. 2010 Mar;11(3):305-8. doi: 10.2217/pgs.10.6.

9.

[Future directions of pharmacogenomics (PGx)].

Kamatani N.

Nihon Shinkei Seishin Yakurigaku Zasshi. 2011 Aug;31(4):149-54. Review. Japanese.

PMID:
21941848
10.

Pharmacogenomic genome-wide association studies: lessons learned thus far.

Crowley JJ, Sullivan PF, McLeod HL.

Pharmacogenomics. 2009 Feb;10(2):161-3. doi: 10.2217/14622416.10.2.161. No abstract available.

11.

Genome-wide association studies of family data in pharmacogenetics: a case study.

Murphy A, Lasky-Su J, Tantisira KG, Litonjua AA, Lange C, Weiss ST.

Curr Pharm Des. 2009;15(32):3764-72.

PMID:
19925427
12.

Methodological and statistical issues in pharmacogenomics.

Peters BJ, Rodin AS, de Boer A, Maitland-van der Zee AH.

J Pharm Pharmacol. 2010 Feb;62(2):161-6. doi: 10.1211/jpp.62.02.0002. Review.

PMID:
20487194
13.
14.

Design considerations for genetic linkage and association studies.

Nsengimana J, Bishop DT.

Methods Mol Biol. 2012;850:237-62. doi: 10.1007/978-1-61779-555-8_13.

PMID:
22307702
15.

Progress in understanding the genomic basis for adverse drug reactions: a comprehensive review and focus on the role of ethnicity.

Chan SL, Jin S, Loh M, Brunham LR.

Pharmacogenomics. 2015;16(10):1161-78. doi: 10.2217/pgs.15.54. Review.

16.

Merging pharmacometabolomics with pharmacogenomics using '1000 Genomes' single-nucleotide polymorphism imputation: selective serotonin reuptake inhibitor response pharmacogenomics.

Abo R, Hebbring S, Ji Y, Zhu H, Zeng ZB, Batzler A, Jenkins GD, Biernacka J, Snyder K, Drews M, Fiehn O, Fridley B, Schaid D, Kamatani N, Nakamura Y, Kubo M, Mushiroda T, Kaddurah-Daouk R, Mrazek DA, Weinshilboum RM.

Pharmacogenet Genomics. 2012 Apr;22(4):247-53. doi: 10.1097/FPC.0b013e32835001c9.

17.

Genome-wide association study: a useful tool to identify common genetic variants associated with drug toxicity and efficacy in cancer pharmacogenomics.

Low SK, Takahashi A, Mushiroda T, Kubo M.

Clin Cancer Res. 2014 May 15;20(10):2541-52. doi: 10.1158/1078-0432.CCR-13-2755. Review.

18.

Genome-wide association studies in pharmacogenomics of antidepressants.

Lin E, Lane HY.

Pharmacogenomics. 2015;16(5):555-66. doi: 10.2217/pgs.15.5. Review.

PMID:
25916525
19.

Phenotype harmonization and cross-study collaboration in GWAS consortia: the GENEVA experience.

Bennett SN, Caporaso N, Fitzpatrick AL, Agrawal A, Barnes K, Boyd HA, Cornelis MC, Hansel NN, Heiss G, Heit JA, Kang JH, Kittner SJ, Kraft P, Lowe W, Marazita ML, Monroe KR, Pasquale LR, Ramos EM, van Dam RM, Udren J, Williams K; GENEVA Consortium..

Genet Epidemiol. 2011 Apr;35(3):159-73. doi: 10.1002/gepi.20564.

20.

Mayo Genome Consortia: a genotype-phenotype resource for genome-wide association studies with an application to the analysis of circulating bilirubin levels.

Bielinski SJ, Chai HS, Pathak J, Talwalkar JA, Limburg PJ, Gullerud RE, Sicotte H, Klee EW, Ross JL, Kocher JP, Kullo IJ, Heit JA, Petersen GM, de Andrade M, Chute CG.

Mayo Clin Proc. 2011 Jul;86(7):606-14. doi: 10.4065/mcp.2011.0178.

Supplemental Content

Support Center