Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Microbial communities acclimate to recurring changes in soil redox potential status.

DeAngelis KM, Silver WL, Thompson AW, Firestone MK.

Environ Microbiol. 2010 Dec;12(12):3137-49. doi: 10.1111/j.1462-2920.2010.02286.x.

PMID:
20629704
2.

Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.

Schellenberger S, Kolb S, Drake HL.

Environ Microbiol. 2010 Apr;12(4):845-61. doi: 10.1111/j.1462-2920.2009.02128.x. Epub 2009 Dec 27.

PMID:
20050868
3.

Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA.

Mikkonen A, Santalahti M, Lappi K, Pulkkinen AM, Montonen L, Suominen L.

FEMS Microbiol Ecol. 2014 Oct;90(1):103-14. doi: 10.1111/1574-6941.12376. Epub 2014 Jul 21.

4.

Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments.

Hollister EB, Engledow AS, Hammett AJ, Provin TL, Wilkinson HH, Gentry TJ.

ISME J. 2010 Jun;4(6):829-38. doi: 10.1038/ismej.2010.3. Epub 2010 Feb 4.

PMID:
20130657
5.

Redox fluctuation structures microbial communities in a wet tropical soil.

Pett-Ridge J, Firestone MK.

Appl Environ Microbiol. 2005 Nov;71(11):6998-7007.

6.

The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

Nicol GW, Leininger S, Schleper C, Prosser JI.

Environ Microbiol. 2008 Nov;10(11):2966-78. doi: 10.1111/j.1462-2920.2008.01701.x. Epub 2008 Aug 14.

PMID:
18707610
7.

Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil.

Nicol GW, Webster G, Glover LA, Prosser JI.

Environ Microbiol. 2004 Aug;6(8):861-7.

PMID:
15250888
8.

Environmental microarray analyses of Antarctic soil microbial communities.

Yergeau E, Schoondermark-Stolk SA, Brodie EL, Déjean S, DeSantis TZ, Gonçalves O, Piceno YM, Andersen GL, Kowalchuk GA.

ISME J. 2009 Mar;3(3):340-51. doi: 10.1038/ismej.2008.111. Epub 2008 Nov 20.

PMID:
19020556
9.

Functional and structural response of the methanogenic microbial community in rice field soil to temperature change.

Conrad R, Klose M, Noll M.

Environ Microbiol. 2009 Jul;11(7):1844-53. doi: 10.1111/j.1462-2920.2009.01909.x. Epub 2009 Mar 24.

PMID:
19508556
10.

Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil.

Jia Z, Conrad R.

Environ Microbiol. 2009 Jul;11(7):1658-71. doi: 10.1111/j.1462-2920.2009.01891.x. Epub 2009 Feb 19.

PMID:
19236445
11.

Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

Offre P, Prosser JI, Nicol GW.

FEMS Microbiol Ecol. 2009 Oct;70(1):99-108. doi: 10.1111/j.1574-6941.2009.00725.x. Epub 2009 Jun 22.

12.

Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

Wang Y, Ke X, Wu L, Lu Y.

Syst Appl Microbiol. 2009 Feb;32(1):27-36. doi: 10.1016/j.syapm.2008.09.007. Epub 2008 Dec 16.

PMID:
19091507
13.

Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.

Martínez CE, Yáñez C, Yoon SJ, Bruns MA.

Environ Sci Technol. 2007 Aug 1;41(15):5323-9.

PMID:
17822097
14.

Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest.

Zhang LM, Wang M, Prosser JI, Zheng YM, He JZ.

FEMS Microbiol Ecol. 2009 Nov;70(2):52-61. doi: 10.1111/j.1574-6941.2009.00775.x. Epub 2009 Sep 1.

15.

Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.

Soo RM, Wood SA, Grzymski JJ, McDonald IR, Cary SC.

Environ Microbiol. 2009 Mar;11(3):715-28. doi: 10.1111/j.1462-2920.2009.01859.x.

PMID:
19278453
16.

Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.

Seo DC, DeLaune RD.

Sci Total Environ. 2010 Aug 1;408(17):3623-31. doi: 10.1016/j.scitotenv.2010.04.043. Epub 2010 May 31.

PMID:
20553938
17.

Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.

DeAngelis KM, Fortney JL, Borglin S, Silver WL, Simmons BA, Hazen TC.

MBio. 2012 Feb 21;3(1). pii: e00249-11. doi: 10.1128/mBio.00249-11. Print 2012.

18.

Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland.

Cruz-Martínez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF.

ISME J. 2009 Jun;3(6):738-44. doi: 10.1038/ismej.2009.16. Epub 2009 Mar 12.

PMID:
19279669
19.

Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam.

Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ.

Environ Microbiol. 2008 Jun;10(6):1601-11. doi: 10.1111/j.1462-2920.2008.01578.x. Epub 2008 Mar 10.

PMID:
18336563
20.

Bacteria, not archaea, restore nitrification in a zinc-contaminated soil.

Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E.

ISME J. 2009 Aug;3(8):916-23. doi: 10.1038/ismej.2009.39. Epub 2009 Apr 23.

PMID:
19387487

Supplemental Content

Support Center