Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99


Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines.

Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, Nishino I, Brice A, Hattori N, Tsuji S.

Am J Hum Genet. 2010 Jul 9;87(1):75-89. doi: 10.1016/j.ajhg.2010.06.006.


Genomic instability in the PARK2 locus is associated with Parkinson's disease.

Ambroziak W, Koziorowski D, Duszyc K, Górka-Skoczylas P, Potulska-Chromik A, Sławek J, Hoffman-Zacharska D.

J Appl Genet. 2015 Nov;56(4):451-461. doi: 10.1007/s13353-015-0282-9. Epub 2015 Apr 2.


Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization.

del Gaudio D, Yang Y, Boggs BA, Schmitt ES, Lee JA, Sahoo T, Pham HT, Wiszniewska J, Chinault AC, Beaudet AL, Eng CM.

Hum Mutat. 2008 Sep;29(9):1100-7. doi: 10.1002/humu.20841.


Genomic rearrangements at the FRA2H common fragile site frequently involve non-homologous recombination events across LTR and L1(LINE) repeats.

Brueckner LM, Sagulenko E, Hess EM, Zheglo D, Blumrich A, Schwab M, Savelyeva L.

Hum Genet. 2012 Aug;131(8):1345-59. doi: 10.1007/s00439-012-1165-3. Epub 2012 Apr 5.


Regional genomic instability predisposes to complex dystrophin gene rearrangements.

Oshima J, Magner DB, Lee JA, Breman AM, Schmitt ES, White LD, Crowe CA, Merrill M, Jayakar P, Rajadhyaksha A, Eng CM, del Gaudio D.

Hum Genet. 2009 Sep;126(3):411-23. doi: 10.1007/s00439-009-0679-9. Epub 2009 May 16.


Duchenne muscular dystrophy caused by a complex rearrangement between intron 43 of the DMD gene and chromosome 4.

Baskin B, Gibson WT, Ray PN.

Neuromuscul Disord. 2011 Mar;21(3):178-82. doi: 10.1016/j.nmd.2010.11.008. Epub 2010 Dec 4.


Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer.

Denison SR, Callahan G, Becker NA, Phillips LA, Smith DI.

Genes Chromosomes Cancer. 2003 Sep;38(1):40-52.


Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms.

Baskin B, Stavropoulos DJ, Rebeiro PA, Orr J, Li M, Steele L, Marshall CR, Lemire EG, Boycott KM, Gibson W, Ray PN.

Mol Genet Genomic Med. 2014 Nov;2(6):539-47. doi: 10.1002/mgg3.108. Epub 2014 Sep 15.


Instability at the FRA8I common fragile site disrupts the genomic integrity of the KIAA0146, CEBPD and PRKDC genes in colorectal cancer.

Brueckner LM, Hess EM, Schwab M, Savelyeva L.

Cancer Lett. 2013 Aug 9;336(1):85-95. doi: 10.1016/j.canlet.2013.04.007. Epub 2013 Apr 16.


A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas.

Gao G, Kasperbauer JL, Tombers NM, Wang V, Mayer K, Smith DI.

Genes Chromosomes Cancer. 2014 May;53(5):392-401. doi: 10.1002/gcc.22150. Epub 2014 Jan 31.


Replication dynamics at common fragile site FRA6E.

Palumbo E, Matricardi L, Tosoni E, Bensimon A, Russo A.

Chromosoma. 2010 Dec;119(6):575-87. doi: 10.1007/s00412-010-0279-4. Epub 2010 Jun 29.


A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome?

Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD.

Genome Res. 2012 Jun;22(6):993-1005. doi: 10.1101/gr.134395.111. Epub 2012 Mar 28. Erratum in: Genome Res. 2016 Oct;26(10 ):1451.


PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice.

Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, Luo F, Cantley LC, Wyllie AH, Adams DJ, Arends MJ.

Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15145-50. doi: 10.1073/pnas.1009941107. Epub 2010 Aug 9.


Low-copy repeats on chromosome 22q11.2 show replication timing switches, DNA flexibility peaks and stress inducible asynchrony, sharing instability features with fragile sites.

Puliti A, Rizzato C, Conti V, Bedini A, Gimelli G, Barale R, Sbrana I.

Mutat Res. 2010 Apr 1;686(1-2):74-83. doi: 10.1016/j.mrfmmm.2010.01.021. Epub 2010 Feb 4.


Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

Kapoor S, Bindu PS, Taly AB, Sinha S, Gayathri N, Rani SV, Chandak GR, Kumar A.

Mol Vis. 2012;18:2022-32. Epub 2012 Jul 20.


DGGE-based whole-gene mutation scanning of the dystrophin gene in Duchenne and Becker muscular dystrophy patients.

Hofstra RM, Mulder IM, Vossen R, de Koning-Gans PA, Kraak M, Ginjaar IB, van der Hout AH, Bakker E, Buys CH, van Ommen GJ, van Essen AJ, den Dunnen JT.

Hum Mutat. 2004 Jan;23(1):57-66.


Common fragile sites, extremely large genes, neural development and cancer.

Smith DI, Zhu Y, McAvoy S, Kuhn R.

Cancer Lett. 2006 Jan 28;232(1):48-57. Epub 2005 Oct 10. Review.


Direct cloning and analysis of DNA sequences from a region of the Chinese hamster genome associated with aphidicolin-sensitive fragility.

Palin AH, Critcher R, Fitzgerald DJ, Anderson JN, Farr CJ.

J Cell Sci. 1998 Jun;111 ( Pt 12):1623-34.


Whole dystrophin gene analysis by next-generation sequencing: a comprehensive genetic diagnosis of Duchenne and Becker muscular dystrophy.

Wang Y, Yang Y, Liu J, Chen XC, Liu X, Wang CZ, He XY.

Mol Genet Genomics. 2014 Oct;289(5):1013-21. doi: 10.1007/s00438-014-0847-z. Epub 2014 Apr 27.


Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing.

Magri F, Del Bo R, D'Angelo MG, Govoni A, Ghezzi S, Gandossini S, Sciacco M, Ciscato P, Bordoni A, Tedeschi S, Fortunato F, Lucchini V, Cereda M, Corti S, Moggio M, Bresolin N, Comi GP.

BMC Med Genet. 2011 Mar 11;12:37. doi: 10.1186/1471-2350-12-37.

Supplemental Content

Support Center