Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 230

1.

Nanoscience and nanostructures for photovoltaics and solar fuels.

Nozik AJ.

Nano Lett. 2010 Aug 11;10(8):2735-41. doi: 10.1021/nl102122x.

PMID:
20597472
2.

Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

Beard MC, Luther JM, Semonin OE, Nozik AJ.

Acc Chem Res. 2013 Jun 18;46(6):1252-60. doi: 10.1021/ar3001958. Epub 2012 Oct 31.

PMID:
23113604
3.

Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers.

Schaller RD, Sykora M, Pietryga JM, Klimov VI.

Nano Lett. 2006 Mar;6(3):424-9.

PMID:
16522035
4.

Multiple exciton generation in colloidal silicon nanocrystals.

Beard MC, Knutsen KP, Yu P, Luther JM, Song Q, Metzger WK, Ellingson RJ, Nozik AJ.

Nano Lett. 2007 Aug;7(8):2506-12. Epub 2007 Jul 24.

PMID:
17645368
5.

Multiple exciton generation in nanocrystal quantum dots--controversy, current status and future prospects.

Binks DJ.

Phys Chem Chem Phys. 2011 Jul 28;13(28):12693-704. doi: 10.1039/c1cp20225a. Epub 2011 May 20.

PMID:
21603696
6.

Exciton multiplication from first principles.

Jaeger HM, Hyeon-Deuk K, Prezhdo OV.

Acc Chem Res. 2013 Jun 18;46(6):1280-9. doi: 10.1021/ar3002365. Epub 2013 Mar 4.

PMID:
23459543
8.

Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.

Beard MC, Johnson JC, Luther JM, Nozik AJ.

Philos Trans A Math Phys Eng Sci. 2015 Jun 28;373(2044). pii: 20140412. doi: 10.1098/rsta.2014.0412.

10.

Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

Kanemitsu Y.

Acc Chem Res. 2013 Jun 18;46(6):1358-66. doi: 10.1021/ar300269z. Epub 2013 Feb 19.

PMID:
23421584
11.

Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.

Cunningham PD, Boercker JE, Foos EE, Lumb MP, Smith AR, Tischler JG, Melinger JS.

Nano Lett. 2011 Aug 10;11(8):3476-81. doi: 10.1021/nl202014a. Epub 2011 Jul 25. Erratum in: Nano Lett. 2013 Jun 12;13(6):3003.

PMID:
21766838
12.

Single-exciton optical gain in semiconductor nanocrystals.

Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A.

Nature. 2007 May 24;447(7143):441-6.

PMID:
17522678
13.

Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.

Zhu H, Lian T.

J Am Chem Soc. 2012 Jul 11;134(27):11289-97. doi: 10.1021/ja304724u. Epub 2012 Jul 2.

PMID:
22702343
14.

Cu2ZnSnS4 nanocrystals and graphene quantum dots for photovoltaics.

Wang J, Xin X, Lin Z.

Nanoscale. 2011 Aug;3(8):3040-8. doi: 10.1039/c1nr10425j. Epub 2011 Jun 28.

PMID:
21713274
15.

Multiple exciton collection in a sensitized photovoltaic system.

Sambur JB, Novet T, Parkinson BA.

Science. 2010 Oct 1;330(6000):63-6. doi: 10.1126/science.1191462.

16.

Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

Kamat PV.

Acc Chem Res. 2012 Nov 20;45(11):1906-15. doi: 10.1021/ar200315d. Epub 2012 Apr 11.

PMID:
22493938
17.

Thinnest two-dimensional nanomaterial-graphene for solar energy.

Hu YH, Wang H, Hu B.

ChemSusChem. 2010 Jul 19;3(7):782-96. doi: 10.1002/cssc.201000061. Review.

PMID:
20544792
18.

Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

Wong WY, Ho CL.

Acc Chem Res. 2010 Sep 21;43(9):1246-56. doi: 10.1021/ar1000378.

PMID:
20608673
19.

Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.

Stone KW, Turner DB, Gundogdu K, Cundiff ST, Nelson KA.

Acc Chem Res. 2009 Sep 15;42(9):1452-61. doi: 10.1021/ar900122k.

PMID:
19691277
20.

Luminescence nanocrystals for solar cell enhancement.

Liu SM, Chen W, Wang ZG.

J Nanosci Nanotechnol. 2010 Mar;10(3):1418-29.

PMID:
20355533

Supplemental Content

Support Center