Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin.

Clark RH, McTaggart JS, Webster R, Mannikko R, Iberl M, Sim XL, Rorsman P, Glitsch M, Beeson D, Ashcroft FM.

Science. 2010 Jul 23;329(5990):458-61. doi: 10.1126/science.1186146. Epub 2010 Jul 1.

2.

Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes.

Girard CA, Wunderlich FT, Shimomura K, Collins S, Kaizik S, Proks P, Abdulkader F, Clark A, Ball V, Zubcevic L, Bentley L, Clark R, Church C, Hugill A, Galvanovskis J, Cox R, Rorsman P, Brüning JC, Ashcroft FM.

J Clin Invest. 2009 Jan;119(1):80-90. doi: 10.1172/JCI35772. Epub 2008 Dec 8.

3.

Analysis of two KCNJ11 neonatal diabetes mutations, V59G and V59A, and the analogous KCNJ8 I60G substitution: differences between the channel subtypes formed with SUR1.

Winkler M, Lutz R, Russ U, Quast U, Bryan J.

J Biol Chem. 2009 Mar 13;284(11):6752-62. doi: 10.1074/jbc.M805435200. Epub 2009 Jan 12.

4.

Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features.

Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM.

Proc Natl Acad Sci U S A. 2004 Dec 14;101(50):17539-44. Epub 2004 Dec 6.

5.

Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits.

Lin YW, Akrouh A, Hsu Y, Hughes N, Nichols CG, De León DD.

Channels (Austin). 2012 Mar-Apr;6(2):133-8. doi: 10.4161/chan.19980. Epub 2012 Mar 1.

6.

Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels.

Tammaro P, Proks P, Ashcroft FM.

J Physiol. 2006 Feb 15;571(Pt 1):3-14. Epub 2005 Dec 8.

7.

The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy.

Koster JC, Cadario F, Peruzzi C, Colombo C, Nichols CG, Barbetti F.

J Clin Endocrinol Metab. 2008 Mar;93(3):1054-61. Epub 2007 Dec 11.

8.

The Kir6.2-F333I mutation differentially modulates KATP channels composed of SUR1 or SUR2 subunits.

Tammaro P, Ashcroft F.

J Physiol. 2007 Jun 15;581(Pt 3):1259-69. Epub 2007 Mar 29.

9.

Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.

Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL.

J Biol Chem. 2009 Mar 20;284(12):7951-9. doi: 10.1074/jbc.M807012200. Epub 2009 Jan 16.

10.

Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism.

Lin YW, Bushman JD, Yan FF, Haidar S, MacMullen C, Ganguly A, Stanley CA, Shyng SL.

J Biol Chem. 2008 Apr 4;283(14):9146-56. doi: 10.1074/jbc.M708798200. Epub 2008 Feb 4.

11.

Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes.

Girard CA, Shimomura K, Proks P, Absalom N, Castano L, Perez de Nanclares G, Ashcroft FM.

Pflugers Arch. 2006 Dec;453(3):323-32. Epub 2006 Sep 22.

PMID:
17021801
12.

Activating mutations in the ABCC8 gene in neonatal diabetes mellitus.

Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L, Vaxillaire M, Froguel P.

N Engl J Med. 2006 Aug 3;355(5):456-66.

13.

Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8).

Babenko AP, Vaxillaire M.

FEBS Lett. 2011 Nov 16;585(22):3555-9. doi: 10.1016/j.febslet.2011.10.020. Epub 2011 Oct 19.

14.

Mutations of the same conserved glutamate residue in NBD2 of the sulfonylurea receptor 1 subunit of the KATP channel can result in either hyperinsulinism or neonatal diabetes.

Männikkö R, Flanagan SE, Sim X, Segal D, Hussain K, Ellard S, Hattersley AT, Ashcroft FM.

Diabetes. 2011 Jun;60(6):1813-22. doi: 10.2337/db10-1583.

15.

Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123.

Hosy E, Dérand R, Revilloud J, Vivaudou M.

J Physiol. 2007 Jul 1;582(Pt 1):27-39. Epub 2007 May 17.

16.

Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels.

Zhou Q, Garin I, Castaño L, Argente J, Muñoz-Calvo MT, Perez de Nanclares G, Shyng SL.

J Clin Endocrinol Metab. 2010 Dec;95(12):E473-8. doi: 10.1210/jc.2010-1231. Epub 2010 Sep 1.

17.

Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium channel impairing trafficking and function.

Marthinet E, Bloc A, Oka Y, Tanizawa Y, Wehrle-Haller B, Bancila V, Dubuis JM, Philippe J, Schwitzgebel VM.

J Clin Endocrinol Metab. 2005 Sep;90(9):5401-6. Epub 2005 Jul 5.

PMID:
15998776
18.

A conserved tryptophan at the membrane-water interface acts as a gatekeeper for Kir6.2/SUR1 channels and causes neonatal diabetes when mutated.

Männikkö R, Stansfeld PJ, Ashcroft AS, Hattersley AT, Sansom MS, Ellard S, Ashcroft FM.

J Physiol. 2011 Jul 1;589(Pt 13):3071-83. doi: 10.1113/jphysiol.2011.209700. Epub 2011 May 3.

19.

Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11.

Edghill EL, Flanagan SE, Ellard S.

Rev Endocr Metab Disord. 2010 Sep;11(3):193-8. doi: 10.1007/s11154-010-9149-x. Review.

PMID:
20922570
20.

Human K(ATP) channelopathies: diseases of metabolic homeostasis.

Olson TM, Terzic A.

Pflugers Arch. 2010 Jul;460(2):295-306. doi: 10.1007/s00424-009-0771-y. Epub 2009 Dec 24. Review.

Supplemental Content

Support Center