Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 165

1.

The genetic basis of hyperuricaemia and gout.

Merriman TR, Dalbeth N.

Joint Bone Spine. 2011 Jan;78(1):35-40. doi: 10.1016/j.jbspin.2010.02.027. Epub 2010 May 15. Review.

PMID:
20472486
2.

The genetics of hyperuricaemia and gout.

Reginato AM, Mount DB, Yang I, Choi HK.

Nat Rev Rheumatol. 2012 Oct;8(10):610-21. doi: 10.1038/nrrheum.2012.144. Epub 2012 Sep 4. Review.

3.

An update on the genetic architecture of hyperuricemia and gout.

Merriman TR.

Arthritis Res Ther. 2015 Apr 10;17:98. doi: 10.1186/s13075-015-0609-2. Review.

4.

Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.

Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, Takahashi A, Nakamura T, Nakashima H, Takada Y, Danjoh I, Shimizu S, Abe J, Kawamura Y, Terashige S, Ogata H, Tatsukawa S, Yin G, Okada R, Morita E, Naito M, Tokumasu A, Onoue H, Iwaya K, Ito T, Takada T, Inoue K, Kato Y, Nakamura Y, Sakurai Y, Suzuki H, Kanai Y, Hosoya T, Hamajima N, Inoue I, Kubo M, Ichida K, Ooyama H, Shimizu T, Shinomiya N.

Ann Rheum Dis. 2016 Apr;75(4):652-9. doi: 10.1136/annrheumdis-2014-206191. Epub 2015 Feb 2.

5.

Genetics of gout.

Choi HK, Zhu Y, Mount DB.

Curr Opin Rheumatol. 2010 Mar;22(2):144-51. doi: 10.1097/BOR.0b013e32833645e8. Review.

PMID:
20110790
6.

[ROLE OF SLC2A9 AND ABCG2 GENE POLYMORPHISMS IN ORIGIN OF HYPERURICEMIA AND GOUT].

Fadieieva A, Prystupa L, Pogorelova O, Kirichenko N, Dudchenko I.

Georgian Med News. 2016 Mar;(252):79-83. Review. Russian.

PMID:
27119840
7.

Genetics of hyperuricemia and gout: implications for the present and future.

George RL, Keenan RT.

Curr Rheumatol Rep. 2013 Feb;15(2):309. doi: 10.1007/s11926-012-0309-8. Review.

PMID:
23307580
8.

Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies.

Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H.

Clin Exp Nephrol. 2012 Feb;16(1):89-95. doi: 10.1007/s10157-011-0532-z. Epub 2011 Nov 1. Review.

PMID:
22038265
9.

The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people.

Yamagishi K, Tanigawa T, Kitamura A, Köttgen A, Folsom AR, Iso H; CIRCS Investigators..

Rheumatology (Oxford). 2010 Aug;49(8):1461-5. doi: 10.1093/rheumatology/keq096. Epub 2010 Apr 25.

PMID:
20421215
10.

Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K, Kusanagi Y, Chiba T, Tadokoro S, Takada Y, Oikawa Y, Inoue H, Suzuki K, Okada R, Nishiyama J, Domoto H, Watanabe S, Fujita M, Morimoto Y, Naito M, Nishio K, Hishida A, Wakai K, Asai Y, Niwa K, Kamakura K, Nonoyama S, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Hamajima N, Shinomiya N.

Sci Transl Med. 2009 Nov 4;1(5):5ra11. doi: 10.1126/scitranslmed.3000237.

11.

Population-specific influence of SLC2A9 genotype on the acute hyperuricaemic response to a fructose load.

Dalbeth N, House ME, Gamble GD, Horne A, Pool B, Purvis L, Stewart A, Merriman M, Cadzow M, Phipps-Green A, Merriman TR.

Ann Rheum Dis. 2013 Nov;72(11):1868-73. doi: 10.1136/annrheumdis-2012-202732. Epub 2013 Jan 24.

PMID:
23349133
12.

Crystal ball gazing: new therapeutic targets for hyperuricaemia and gout.

Dalbeth N, Merriman T.

Rheumatology (Oxford). 2009 Mar;48(3):222-6. doi: 10.1093/rheumatology/ken460. Epub 2008 Dec 24. Review.

PMID:
19109320
13.

ABCG2 dysfunction increases the risk of renal overload hyperuricemia.

Matsuo H, Takada T, Nakayama A, Shimizu T, Sakiyama M, Shimizu S, Chiba T, Nakashima H, Nakamura T, Takada Y, Sakurai Y, Hosoya T, Shinomiya N, Ichida K.

Nucleosides Nucleotides Nucleic Acids. 2014;33(4-6):266-74. doi: 10.1080/15257770.2013.866679.

PMID:
24940678
14.

Genetic analysis of ABCG2 and SLC2A9 gene polymorphisms in gouty arthritis in a Korean population.

Kim YS, Kim Y, Park G, Kim SK, Choe JY, Park BL, Kim HS.

Korean J Intern Med. 2015 Nov;30(6):913-20. doi: 10.3904/kjim.2015.30.6.913. Epub 2015 Oct 30.

15.

ABCG2/BCRP dysfunction as a major cause of gout.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, Hosoya T, Shinomiya N.

Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1117-28. doi: 10.1080/15257770.2011.633954.

PMID:
22132966
16.

The genetic basis of gout.

Merriman TR, Choi HK, Dalbeth N.

Rheum Dis Clin North Am. 2014 May;40(2):279-90. doi: 10.1016/j.rdc.2014.01.009. Epub 2014 Feb 19. Review.

PMID:
24703347
17.

Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge.

Dalbeth N, House ME, Gamble GD, Pool B, Horne A, Purvis L, Stewart A, Merriman M, Cadzow M, Phipps-Green A, Merriman TR.

Arthritis Res Ther. 2014 Jan 30;16(1):R34. doi: 10.1186/ar4463.

18.

A 'complexity' of urate transporters.

Wright AF, Rudan I, Hastie ND, Campbell H.

Kidney Int. 2010 Sep;78(5):446-52. doi: 10.1038/ki.2010.206. Epub 2010 Jul 7. Review.

19.

Identification of ABCG2 dysfunction as a major factor contributing to gout.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Takada Y, Okada C, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Shinomiya N.

Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1098-104. doi: 10.1080/15257770.2011.627902.

PMID:
22132963
20.

Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout.

Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M.

Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10338-42. doi: 10.1073/pnas.0901249106. Epub 2009 Jun 8.

Supplemental Content

Support Center