Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

A hierarchy of self-renewing tumor-initiating cell types in glioblastoma.

Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS.

Cancer Cell. 2010 Apr 13;17(4):362-75. doi: 10.1016/j.ccr.2009.12.049.

2.

Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors.

Liu Q, Nguyen DH, Dong Q, Shitaku P, Chung K, Liu OY, Tso JL, Liu JY, Konkankit V, Cloughesy TF, Mischel PS, Lane TF, Liau LM, Nelson SF, Tso CL.

J Neurooncol. 2009 Aug;94(1):1-19. doi: 10.1007/s11060-009-9919-z. Epub 2009 May 26.

3.

Heterogeneous phenotype of human glioblastoma: in vitro study.

Denysenko T, Gennero L, Juenemann C, Morra I, Masperi P, Ceroni V, Pragliola A, Ponzetto A, Melcarne A.

Cell Biochem Funct. 2014 Mar;32(2):164-76. doi: 10.1002/cbf.2988. Epub 2013 Jul 8.

PMID:
23836332
4.

CD133 is essential for glioblastoma stem cell maintenance.

Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G.

Stem Cells. 2013 May;31(5):857-69. doi: 10.1002/stem.1317.

5.

CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.

Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP.

Cancer Res. 2007 May 1;67(9):4010-5.

6.

Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor-Initiating Cells.

Venugopal C, Hallett R, Vora P, Manoranjan B, Mahendram S, Qazi MA, McFarlane N, Subapanditha M, Nolte SM, Singh M, Bakhshinyan D, Garg N, Vijayakumar T, Lach B, Provias JP, Reddy K, Murty NK, Doble BW, Bhatia M, Hassell JA, Singh SK.

Clin Cancer Res. 2015 Dec 1;21(23):5324-37. doi: 10.1158/1078-0432.CCR-14-3147. Epub 2015 Jul 7.

8.

Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ.

Mol Cancer Res. 2009 Apr;7(4):489-97. doi: 10.1158/1541-7786.MCR-08-0360. Erratum in: Mol Cancer Res. 2009 Jun;7(6):987. Shankavarum, Uma T [corrected to Shankavaram, Uma T].

9.

Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas.

Garcia JL, Perez-Caro M, Gomez-Moreta JA, Gonzalez F, Ortiz J, Blanco O, Sancho M, Hernandez-Rivas JM, Gonzalez-Sarmiento R, Sanchez-Martin M.

BMC Cancer. 2010 Aug 24;10:454. doi: 10.1186/1471-2407-10-454.

10.

Selective lentiviral gene delivery to CD133-expressing human glioblastoma stem cells.

Bayin NS, Modrek AS, Dietrich A, Lebowitz J, Abel T, Song HR, Schober M, Zagzag D, Buchholz CJ, Chao MV, Placantonakis DG.

PLoS One. 2014 Dec 26;9(12):e116114. doi: 10.1371/journal.pone.0116114. eCollection 2014.

11.

Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein.

Zarkoob H, Taube JH, Singh SK, Mani SA, Kohandel M.

PLoS One. 2013 May 29;8(5):e64169. doi: 10.1371/journal.pone.0064169. Print 2013.

12.

Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme.

Brown DV, Daniel PM, D'Abaco GM, Gogos A, Ng W, Morokoff AP, Mantamadiotis T.

Oncotarget. 2015 Mar 20;6(8):6267-80.

13.

Brain tumor stem cells from an adenoid glioblastoma multiforme.

Oka N, Soeda A, Noda S, Iwama T.

Neurol Med Chir (Tokyo). 2009 Apr;49(4):146-50; discussion 150-1.

14.

CD133 as a marker for regulation and potential for targeted therapies in glioblastoma multiforme.

Choy W, Nagasawa DT, Trang A, Thill K, Spasic M, Yang I.

Neurosurg Clin N Am. 2012 Jul;23(3):391-405. doi: 10.1016/j.nec.2012.04.011. Epub 2012 Jun 5. Review.

PMID:
22748652
15.

BMI1 sustains human glioblastoma multiforme stem cell renewal.

Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G.

J Neurosci. 2009 Jul 15;29(28):8884-96. doi: 10.1523/JNEUROSCI.0968-09.2009.

16.

Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition.

Ying M, Wang S, Sang Y, Sun P, Lal B, Goodwin CR, Guerrero-Cazares H, Quinones-Hinojosa A, Laterra J, Xia S.

Oncogene. 2011 Aug 4;30(31):3454-67. doi: 10.1038/onc.2011.58. Epub 2011 Mar 7.

17.

Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling.

Annabi B, Lachambre MP, Plouffe K, Sartelet H, BĂ©liveau R.

Mol Carcinog. 2009 Oct;48(10):910-9. doi: 10.1002/mc.20541.

PMID:
19326372
18.

Expression and regulation of AC133 and CD133 in glioblastoma.

Campos B, Zeng L, Daotrong PH, Eckstein V, Unterberg A, Mairbäurl H, Herold-Mende C.

Glia. 2011 Dec;59(12):1974-86. doi: 10.1002/glia.21239. Epub 2011 Sep 7.

PMID:
21901757
19.

Correlation between glioblastoma stem-like cells and tumor vascularization.

He H, Niu CS, Li MW.

Oncol Rep. 2012 Jan;27(1):45-50. doi: 10.3892/or.2011.1484. Epub 2011 Oct 3.

PMID:
21971709
20.

Proliferation of human glioblastoma stem cells occurs independently of exogenous mitogens.

Kelly JJ, Stechishin O, Chojnacki A, Lun X, Sun B, Senger DL, Forsyth P, Auer RN, Dunn JF, Cairncross JG, Parney IF, Weiss S.

Stem Cells. 2009 Aug;27(8):1722-33. doi: 10.1002/stem.98.

Supplemental Content

Support Center