Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Models of cardiac excitation-contraction coupling in ventricular myocytes.

Williams GS, Smith GD, Sobie EA, Jafri MS.

Math Biosci. 2010 Jul;226(1):1-15. doi: 10.1016/j.mbs.2010.03.005. Review.

PMID:
20346962
2.

Models of excitation-contraction coupling in cardiac ventricular myocytes.

Jafri MS.

Methods Mol Biol. 2012;910:309-35. doi: 10.1007/978-1-61779-965-5_14.

3.

A probability density approach to modeling local control of calcium-induced calcium release in cardiac myocytes.

Williams GS, Huertas MA, Sobie EA, Jafri MS, Smith GD.

Biophys J. 2007 Apr 1;92(7):2311-28.

4.

Moment closure for local control models of calcium-induced calcium release in cardiac myocytes.

Williams GS, Huertas MA, Sobie EA, Jafri MS, Smith GD.

Biophys J. 2008 Aug;95(4):1689-703. doi: 10.1529/biophysj.107.125948.

5.

Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes.

Hatano A, Okada J, Hisada T, Sugiura S.

J Biomech. 2012 Mar 15;45(5):815-23. doi: 10.1016/j.jbiomech.2011.11.022.

PMID:
22226404
6.

Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback.

Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD.

J Biomech Eng. 2014 Feb;136(2):021007. doi: 10.1115/1.4026221. Review.

7.

Interplay of ryanodine receptor distribution and calcium dynamics.

Izu LT, Means SA, Shadid JN, Chen-Izu Y, Balke CW.

Biophys J. 2006 Jul 1;91(1):95-112.

8.

Triadin overexpression stimulates excitation-contraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes.

Terentyev D, Cala SE, Houle TD, Viatchenko-Karpinski S, Gyorke I, Terentyeva R, Williams SC, Gyorke S.

Circ Res. 2005 Apr 1;96(6):651-8.

9.

How does the shape of the cardiac action potential control calcium signaling and contraction in the heart?

Santana LF, Cheng EP, Lederer WJ.

J Mol Cell Cardiol. 2010 Dec;49(6):901-3. doi: 10.1016/j.yjmcc.2010.09.005. No abstract available.

10.

Analysing cardiac excitation-contraction coupling with mathematical models of local control.

Soeller C, Cannell MB.

Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):141-62. Review.

PMID:
15142741
11.

Electrophysiological modeling of cardiac ventricular function: from cell to organ.

Winslow RL, Scollan DF, Holmes A, Yung CK, Zhang J, Jafri MS.

Annu Rev Biomed Eng. 2000;2:119-55. Review.

12.

The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function.

Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Györke S.

Cardiovasc Res. 2011 Jun 1;90(3):493-502. doi: 10.1093/cvr/cvr025.

13.
14.
15.

Triadin: the new player on excitation-contraction coupling block.

Morad M, Cleemann L, Knollmann BC.

Circ Res. 2005 Apr 1;96(6):607-9. No abstract available.

16.

IP3 receptor-dependent Ca2+ release modulates excitation-contraction coupling in rabbit ventricular myocytes.

Domeier TL, Zima AV, Maxwell JT, Huke S, Mignery GA, Blatter LA.

Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H596-604.

17.

Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.

Koivumäki JT, Korhonen T, Takalo J, Weckström M, Tavi P.

BMC Physiol. 2009 Aug 31;9:16. doi: 10.1186/1472-6793-9-16.

18.

The cardiac muscle duplex as a method to study myocardial heterogeneity.

Solovyova O, Katsnelson LB, Konovalov PV, Kursanov AG, Vikulova NA, Kohl P, Markhasin VS.

Prog Biophys Mol Biol. 2014 Aug;115(2-3):115-28. doi: 10.1016/j.pbiomolbio.2014.07.010. Review.

20.

Mathematical model of mouse embryonic cardiomyocyte excitation-contraction coupling.

Korhonen T, Rapila R, Tavi P.

J Gen Physiol. 2008 Oct;132(4):407-19. doi: 10.1085/jgp.200809961.

Items per page

Supplemental Content

Support Center