Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease.

Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K, Sohani AR, Guimaraes A, Xie W, Chauhan D, Schoonmaker JA, Attar E, Churchill M, Weller E, Munshi N, Seehra JS, Weissleder R, Anderson KC, Scadden DT, Raje N.

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5124-9. doi: 10.1073/pnas.0911929107.

2.

Lenalidomide in combination with an activin A-neutralizing antibody: preclinical rationale for a novel anti-myeloma strategy.

Scullen T, Santo L, Vallet S, Fulciniti M, Eda H, Cirstea D, Patel K, Nemani N, Yee A, Mahindra A, Raje N.

Leukemia. 2013 Aug;27(8):1715-21. doi: 10.1038/leu.2013.50.

PMID:
23417027
3.

Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma.

Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, Barlogie B, Shaughnessy JD Jr.

Blood. 2008 Jul 1;112(1):196-207. doi: 10.1182/blood-2008-01-132134.

4.

Pathogenesis of myeloma bone disease.

Roodman GD.

J Cell Biochem. 2010 Feb 1;109(2):283-91. doi: 10.1002/jcb.22403.

PMID:
20014067
5.

Update on the pathogenesis of osteolysis in multiple myeloma patients.

Giuliani N, Colla S, Rizzoli V.

Acta Biomed. 2004 Dec;75(3):143-52. Review.

PMID:
15796087
6.

Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease.

Hjertner O, Torgersen ML, Seidel C, Hjorth-Hansen H, Waage A, Børset M, Sundan A.

Blood. 1999 Dec 1;94(11):3883-8.

7.

Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo.

Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud'huin M, Coulton L, Evans H, Abdul N, Werner ED, Bouxsein ML, Key ML, Seehra J, Arnett TR, Vanderkerken K, Croucher P.

J Bone Miner Res. 2010 Dec;25(12):2633-46. doi: 10.1002/jbmr.142. Erratum in: J Bone Miner Res. 2012 Sep;27(9):2036-7. J Bone Miner Res. 2011 Feb;26(2):439.

8.

A novel role for CCL3 (MIP-1α) in myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function.

Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti MT, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden DT, Anderson KC, Raje N.

Leukemia. 2011 Jul;25(7):1174-81. doi: 10.1038/leu.2011.43.

9.

IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma.

Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD, Giuliani N.

Blood. 2005 Aug 15;106(4):1407-14.

10.

Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.

Vanderkerken K, Medicherla S, Coulton L, De Raeve H, Willems A, Lawson M, Van Camp B, Protter AA, Higgins LS, Menu E, Croucher PI.

Cancer Res. 2007 May 15;67(10):4572-7.

11.

Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells.

Silvestris F, Cafforio P, Calvani N, Dammacco F.

Br J Haematol. 2004 Aug;126(4):475-86.

PMID:
15287939
12.

Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.

Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD Jr, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI.

J Bone Miner Res. 2009 Mar;24(3):425-36. doi: 10.1359/jbmr.081104.

13.

Pathogenesis of myeloma bone disease.

Roodman GD.

Blood Cells Mol Dis. 2004 Mar-Apr;32(2):290-2. Review.

PMID:
15003820
14.

Possible involvement of protein kinases and Smad2 signaling pathways on osteoclast differentiation enhanced by activin A.

Murase Y, Okahashi N, Koseki T, Itoh K, Udagawa N, Hashimoto O, Sugino H, Noguchi T, Nishihara T.

J Cell Physiol. 2001 Aug;188(2):236-42.

PMID:
11424090
15.

BMP-3 promotes mesenchymal stem cell proliferation through the TGF-beta/activin signaling pathway.

Stewart A, Guan H, Yang K.

J Cell Physiol. 2010 Jun;223(3):658-66. doi: 10.1002/jcp.22064.

PMID:
20143330
16.
17.

Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma.

Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S, Wakatsuki S, Kosaka M, Kido S, Inoue D, Matsumoto T.

Blood. 2002 Sep 15;100(6):2195-202.

18.

Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth.

Takeuchi K, Abe M, Hiasa M, Oda A, Amou H, Kido S, Harada T, Tanaka O, Miki H, Nakamura S, Nakano A, Kagawa K, Yata K, Ozaki S, Matsumoto T.

PLoS One. 2010 Mar 25;5(3):e9870. doi: 10.1371/journal.pone.0009870.

19.

Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease.

Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, Bonomini S, Hojden M, Sammarelli G, Barillè S, Bataille R, Rizzoli V.

Blood. 2002 Dec 15;100(13):4615-21.

20.

Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients.

Colucci S, Brunetti G, Mori G, Oranger A, Centonze M, Mori C, Cantatore FP, Tamma R, Rizzi R, Liso V, Zallone A, Grano M.

Leukemia. 2009 Nov;23(11):2139-46. doi: 10.1038/leu.2009.136.

PMID:
19587706

Supplemental Content

Support Center