Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.

Moon TS, Dueber JE, Shiue E, Prather KL.

Metab Eng. 2010 May;12(3):298-305. doi: 10.1016/j.ymben.2010.01.003. Epub 2010 Feb 1.

PMID:
20117231
2.

Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.

Shiue E, Prather KL.

Metab Eng. 2014 Mar;22:22-31. doi: 10.1016/j.ymben.2013.12.002. Epub 2013 Dec 10.

PMID:
24333274
3.

Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.

Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL.

Appl Environ Microbiol. 2009 Feb;75(3):589-95. doi: 10.1128/AEM.00973-08. Epub 2008 Dec 5. Erratum in: Appl Environ Microbiol. 2009 Jul;75(13):4660.

4.

Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.

Gupta A, Hicks MA, Manchester SP, Prather KL.

Biotechnol J. 2016 Sep;11(9):1201-8. doi: 10.1002/biot.201500563. Epub 2016 Jun 29.

PMID:
27312887
5.

Production of glucaric acid from myo-inositol in engineered Pichia pastoris.

Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z.

Enzyme Microb Technol. 2016 Sep;91:8-16. doi: 10.1016/j.enzmictec.2016.05.009. Epub 2016 May 24.

PMID:
27444324
6.

Synthetic protein scaffolds provide modular control over metabolic flux.

Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD.

Nat Biotechnol. 2009 Aug;27(8):753-9. doi: 10.1038/nbt.1557. Epub 2009 Aug 2.

PMID:
19648908
7.

Oxygen activation by a mixed-valent, diiron(II/III) cluster in the glycol cleavage reaction catalyzed by myo-inositol oxygenase.

Xing G, Barr EW, Diao Y, Hoffart LM, Prabhu KS, Arner RJ, Reddy CC, Krebs C, Bollinger JM Jr.

Biochemistry. 2006 May 2;45(17):5402-12.

PMID:
16634621
8.

Increased expression of myo-inositol oxygenase is involved in the tubulointerstitial injury of diabetic nephropathy.

Lu Y, Liu C, Miao X, Xu K, Wu X, Liu C.

Exp Clin Endocrinol Diabetes. 2009 Jun;117(6):257-65. doi: 10.1055/s-2008-1081212. Epub 2008 Dec 3.

PMID:
19053028
9.

Myo-inositol oxygenase genes are involved in the development of syncytia induced by Heterodera schachtii in Arabidopsis roots.

Siddique S, Endres S, Atkins JM, Szakasits D, Wieczorek K, Hofmann J, Blaukopf C, Urwin PE, Tenhaken R, Grundler FM, Kreil DP, Bohlmann H.

New Phytol. 2009 Oct;184(2):457-72. doi: 10.1111/j.1469-8137.2009.02981.x. Epub 2009 Aug 18.

10.

Evolution-guided optimization of biosynthetic pathways.

Raman S, Rogers JK, Taylor ND, Church GM.

Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17803-8. doi: 10.1073/pnas.1409523111. Epub 2014 Dec 1.

11.

Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney.

Arner RJ, Prabhu KS, Reddy CC.

Biochem Biophys Res Commun. 2004 Nov 26;324(4):1386-92.

PMID:
15504367
12.

Up-regulation of human myo-inositol oxygenase by hyperosmotic stress in renal proximal tubular epithelial cells.

Prabhu KS, Arner RJ, Vunta H, Reddy CC.

J Biol Chem. 2005 May 20;280(20):19895-901. Epub 2005 Mar 18.

13.

Expression of myo-inositol oxygenase in tissues susceptible to diabetic complications.

Arner RJ, Prabhu KS, Krishnan V, Johnson MC, Reddy CC.

Biochem Biophys Res Commun. 2006 Jan 20;339(3):816-20. Epub 2005 Nov 28.

PMID:
16332355
15.

A coupled dinuclear iron cluster that is perturbed by substrate binding in myo-inositol oxygenase.

Xing G, Hoffart LM, Diao Y, Prabhu KS, Arner RJ, Reddy CC, Krebs C, Bollinger JM Jr.

Biochemistry. 2006 May 2;45(17):5393-401.

PMID:
16634620
16.

Demonstration by 2H ENDOR spectroscopy that myo-inositol binds via an alkoxide bridge to the mixed-valent diiron center of myo-inositol oxygenase.

Kim SH, Xing G, Bollinger JM Jr, Krebs C, Hoffman BM.

J Am Chem Soc. 2006 Aug 16;128(32):10374-5.

PMID:
16895396
17.

Transcriptional and post-translational modulation of myo-inositol oxygenase by high glucose and related pathobiological stresses.

Nayak B, Kondeti VK, Xie P, Lin S, Viswakarma N, Raparia K, Kanwar YS.

J Biol Chem. 2011 Aug 5;286(31):27594-611. doi: 10.1074/jbc.M110.217141. Epub 2011 Jun 7.

18.

Butyrate production in engineered Escherichia coli with synthetic scaffolds.

Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, Jung GY, Oh MK.

Biotechnol Bioeng. 2013 Oct;110(10):2790-4. doi: 10.1002/bit.24925. Epub 2013 Apr 22.

PMID:
23568786
19.

[Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid].

Gong X, Liu Y, Wang C, Li J, Kang Z.

Sheng Wu Gong Cheng Xue Bao. 2017 Feb 25;33(2):228-236. doi: 10.13345/j.cjb.160287. Chinese.

20.

Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes.

Reizman IM, Stenger AR, Reisch CR, Gupta A, Connors NC, Prather KL.

Metab Eng Commun. 2015 Dec 1;2:109-116.

Supplemental Content

Support Center