Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Genome-wide prediction of transcription factor binding sites using an integrated model.

Won KJ, Ren B, Wang W.

Genome Biol. 2010 Jan 22;11(1):R7. doi: 10.1186/gb-2010-11-1-r7.

2.

Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

Chen CY, Morris Q, Mitchell JA.

BMC Genomics. 2012 Apr 26;13:152. doi: 10.1186/1471-2164-13-152.

3.

A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.

He X, Chen CC, Hong F, Fang F, Sinha S, Ng HH, Zhong S.

PLoS One. 2009 Dec 1;4(12):e8155. doi: 10.1371/journal.pone.0008155.

4.

Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.

Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E.

Gene. 2013 Dec 1;531(2):212-9. doi: 10.1016/j.gene.2013.09.011.

PMID:
24042128
5.

RFECS: a random-forest based algorithm for enhancer identification from chromatin state.

Rajagopal N, Xie W, Li Y, Wagner U, Wang W, Stamatoyannopoulos J, Ernst J, Kellis M, Ren B.

PLoS Comput Biol. 2013;9(3):e1002968. doi: 10.1371/journal.pcbi.1002968.

6.

Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell.

Orlov Y, Xu H, Afonnikov D, Lim B, Heng JC, Yuan P, Chen M, Yan J, Clarke N, Orlova N, Huss M, Gunbin K, Podkolodnyy N, Ng HH.

J Integr Bioinform. 2012 Sep 18;9(2):211. doi: 10.2390/biecoll-jib-2012-211.

PMID:
22987856
7.

The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.

Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, Javierre BM, Nagano T, Katsman Y, Sakthidevi M, Wingett SW, Dimitrova E, Dimond A, Edelman LB, Elderkin S, Tabbada K, Darbo E, Andrews S, Herman B, Higgs A, LeProust E, Osborne CS, Mitchell JA, Luscombe NM, Fraser P.

Genome Res. 2015 Apr;25(4):582-97. doi: 10.1101/gr.185272.114.

8.

ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.

Hon G, Ren B, Wang W.

PLoS Comput Biol. 2008 Oct;4(10):e1000201. doi: 10.1371/journal.pcbi.1000201.

9.

Differential motif enrichment analysis of paired ChIP-seq experiments.

Lesluyes T, Johnson J, Machanick P, Bailey TL.

BMC Genomics. 2014 Sep 2;15:752. doi: 10.1186/1471-2164-15-752.

10.

Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry.

Engelen E, Brandsma JH, Moen MJ, Signorile L, Dekkers DH, Demmers J, Kockx CE, Ozgür Z, van IJcken WF, van den Berg DL, Poot RA.

Nat Commun. 2015 May 20;6:7155. doi: 10.1038/ncomms8155.

11.

An integrated approach to identifying cis-regulatory modules in the human genome.

Won KJ, Agarwal S, Shen L, Shoemaker R, Ren B, Wang W.

PLoS One. 2009;4(5):e5501. doi: 10.1371/journal.pone.0005501.

12.

Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.

Bolouri H, Ruzzo WL.

J Comput Biol. 2012 Sep;19(9):989-97. doi: 10.1089/cmb.2012.0100.

PMID:
22897152
13.

Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages.

Lan X, Witt H, Katsumura K, Ye Z, Wang Q, Bresnick EH, Farnham PJ, Jin VX.

Nucleic Acids Res. 2012 Sep;40(16):7690-704.

14.

Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.

Rye M, Sætrom P, Håndstad T, Drabløs F.

BMC Biol. 2011 Nov 24;9:80. doi: 10.1186/1741-7007-9-80.

15.

Genome-wide map of regulatory interactions in the human genome.

Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang MQ, Snyder MP.

Genome Res. 2014 Dec;24(12):1905-17. doi: 10.1101/gr.176586.114.

16.

High resolution mapping of enhancer-promoter interactions.

Reeder C, Closser M, Poh HM, Sandhu K, Wichterle H, Gifford D.

PLoS One. 2015 May 13;10(5):e0122420. doi: 10.1371/journal.pone.0122420.

17.

FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells.

Murtha M, Tokcaer-Keskin Z, Tang Z, Strino F, Chen X, Wang Y, Xi X, Basilico C, Brown S, Bonneau R, Kluger Y, Dailey L.

Nat Methods. 2014 May;11(5):559-65. doi: 10.1038/nmeth.2885.

18.

Chromatin properties of regulatory DNA probed by manipulation of transcription factors.

Sharov AA, Nishiyama A, Qian Y, Dudekula DB, Longo DL, Schlessinger D, Ko MS.

J Comput Biol. 2014 Aug;21(8):569-77. doi: 10.1089/cmb.2013.0126.

19.

Prediction of regulatory elements in mammalian genomes using chromatin signatures.

Won KJ, Chepelev I, Ren B, Wang W.

BMC Bioinformatics. 2008 Dec 18;9:547. doi: 10.1186/1471-2105-9-547.

20.

A cis-regulatory map of the Drosophila genome.

Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, Li Z, Ishii H, Spokony RF, Chen J, Hwang L, Cheng C, Auburn RP, Davis MB, Domanus M, Shah PK, Morrison CA, Zieba J, Suchy S, Senderowicz L, Victorsen A, Bild NA, Grundstad AJ, Hanley D, MacAlpine DM, Mannervik M, Venken K, Bellen H, White R, Gerstein M, Russell S, Grossman RL, Ren B, Posakony JW, Kellis M, White KP.

Nature. 2011 Mar 24;471(7339):527-31. doi: 10.1038/nature09990.

Items per page

Supplemental Content

Support Center