Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 137

1.

Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888.

Karlberg T, Hammarström M, Schütz P, Svensson L, Schüler H.

Biochemistry. 2010 Feb 16;49(6):1056-8. doi: 10.1021/bi902079y.

PMID:
20092359
2.

Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.

Altmeyer M, Messner S, Hassa PO, Fey M, Hottiger MO.

Nucleic Acids Res. 2009 Jun;37(11):3723-38. doi: 10.1093/nar/gkp229. Epub 2009 Apr 16.

3.

Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2.

Qiu W, Lam R, Voytyuk O, Romanov V, Gordon R, Gebremeskel S, Vodsedalek J, Thompson C, Beletskaya I, Battaile KP, Pai EF, Rottapel R, Chirgadze NY.

Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2740-53. doi: 10.1107/S1399004714017660. Epub 2014 Sep 27.

4.

Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3.

Lehtiö L, Jemth AS, Collins R, Loseva O, Johansson A, Markova N, Hammarström M, Flores A, Holmberg-Schiavone L, Weigelt J, Helleday T, Schüler H, Karlberg T.

J Med Chem. 2009 May 14;52(9):3108-11. doi: 10.1021/jm900052j.

PMID:
19354255
5.

Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche M, Cohen MS, Schüler H.

J Med Chem. 2017 Feb 23;60(4):1262-1271. doi: 10.1021/acs.jmedchem.6b00990. Epub 2016 Dec 21.

PMID:
28001384
6.

Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.

Oliver AW, Amé JC, Roe SM, Good V, de Murcia G, Pearl LH.

Nucleic Acids Res. 2004 Jan 22;32(2):456-64. Print 2004.

7.

Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.

Gagné JP, Ethier C, Defoy D, Bourassa S, Langelier MF, Riccio AA, Pascal JM, Moon KM, Foster LJ, Ning Z, Figeys D, Droit A, Poirier GG.

DNA Repair (Amst). 2015 Jun;30:68-79. doi: 10.1016/j.dnarep.2015.02.004. Epub 2015 Feb 19.

PMID:
25800440
8.

Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy.

Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Soto M, Pérez JM.

Recent Pat Anticancer Drug Discov. 2006 Jan;1(1):39-53. Review.

PMID:
18221025
9.

Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast.

Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J, Yeh E, Thode S, Jarnagin K, Jain A, Morgans D, Melese T.

Cancer Res. 2001 May 15;61(10):4175-83.

10.

Free energy calculation provides insight into the action mechanism of selective PARP-1 inhibitor.

Cao R.

J Mol Model. 2016 Apr;22(4):74. doi: 10.1007/s00894-016-2952-x. Epub 2016 Mar 12.

PMID:
26969680
11.

PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses.

Song J, Keppler BD, Wise RR, Bent AF.

PLoS Genet. 2015 May 7;11(5):e1005200. doi: 10.1371/journal.pgen.1005200. eCollection 2015 May.

12.

Binding mode of novel 1-substituted quinazoline derivatives to poly(ADP-ribose) polymerase-catalytic domain, revealed by X-ray crystal structure analysis of complexes.

Matsumoto K, Kondo K, Ota T, Kawashima A, Kitamura K, Ishida T.

Biochim Biophys Acta. 2006 May;1764(5):913-9. Epub 2006 Apr 3.

PMID:
16631419
13.
14.

Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes.

Citarelli M, Teotia S, Lamb RS.

BMC Evol Biol. 2010 Oct 13;10:308. doi: 10.1186/1471-2148-10-308.

15.

Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

Karlberg T, Klepsch M, Thorsell AG, Andersson CD, Linusson A, Schüler H.

J Biol Chem. 2015 Mar 20;290(12):7336-44. doi: 10.1074/jbc.M114.630160. Epub 2015 Jan 29.

16.

Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor.

Liu X, Shi Y, Maag DX, Palma JP, Patterson MJ, Ellis PA, Surber BW, Ready DB, Soni NB, Ladror US, Xu AJ, Iyer R, Harlan JE, Solomon LR, Donawho CK, Penning TD, Johnson EF, Shoemaker AR.

Clin Cancer Res. 2012 Jan 15;18(2):510-23. doi: 10.1158/1078-0432.CCR-11-1973. Epub 2011 Nov 29.

17.

The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction.

Langelier MF, Ruhl DD, Planck JL, Kraus WL, Pascal JM.

J Biol Chem. 2010 Jun 11;285(24):18877-87. doi: 10.1074/jbc.M110.105668. Epub 2010 Apr 13.

18.

PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.

Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM.

Mol Cell. 2015 Dec 3;60(5):755-768. doi: 10.1016/j.molcel.2015.10.013. Epub 2015 Nov 25.

19.

Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair.

Dantzer F, Amé JC, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G.

Methods Enzymol. 2006;409:493-510.

PMID:
16793420
20.

Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors.

Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y.

Cancer Res. 2012 Nov 1;72(21):5588-99. doi: 10.1158/0008-5472.CAN-12-2753.

Supplemental Content

Support Center