Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.

Khersonsky O, Röthlisberger D, Dym O, Albeck S, Jackson CJ, Baker D, Tawfik DS.

J Mol Biol. 2010 Mar 5;396(4):1025-42. doi: 10.1016/j.jmb.2009.12.031. Epub 2009 Dec 28.

PMID:
20036254
2.

Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59.

Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S, Houk KN, Baker D, Tawfik DS.

Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10358-63. doi: 10.1073/pnas.1121063109. Epub 2012 Jun 8.

3.

Kemp elimination catalysts by computational enzyme design.

Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D.

Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.

PMID:
18354394
4.

Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.

Khersonsky O, Röthlisberger D, Wollacott AM, Murphy P, Dym O, Albeck S, Kiss G, Houk KN, Baker D, Tawfik DS.

J Mol Biol. 2011 Apr 1;407(3):391-412. doi: 10.1016/j.jmb.2011.01.041. Epub 2011 Jan 28.

5.

Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.

Labas A, Szabo E, Mones L, Fuxreiter M.

Biochim Biophys Acta. 2013 May;1834(5):908-17. doi: 10.1016/j.bbapap.2013.01.005. Epub 2013 Feb 1. Review.

PMID:
23380188
6.

Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity.

Ahmed SA, Olson MA, Ludivico ML, Gilsdorf J, Smith LA.

Protein J. 2008 Apr;27(3):151-62. doi: 10.1007/s10930-007-9118-8.

PMID:
18213512
7.

Catalytic mechanism of phosphorylase kinase probed by mutational studies.

Skamnaki VT, Owen DJ, Noble ME, Lowe ED, Lowe G, Oikonomakos NG, Johnson LN.

Biochemistry. 1999 Nov 2;38(44):14718-30.

PMID:
10545198
8.

Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis.

Berti PJ, Chindemi P.

Biochemistry. 2009 May 5;48(17):3699-707. doi: 10.1021/bi802251s.

PMID:
19271774
9.

Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.

Harris TK, Czerwinski RM, Johnson WH Jr, Legler PM, Abeygunawardana C, Massiah MA, Stivers JT, Whitman CP, Mildvan AS.

Biochemistry. 1999 Sep 21;38(38):12343-57.

PMID:
10493802
10.

The role of reorganization energy in rational enzyme design.

Fuxreiter M, Mones L.

Curr Opin Chem Biol. 2014 Aug;21:34-41. doi: 10.1016/j.cbpa.2014.03.011. Epub 2014 Apr 24. Review.

11.

Engineered enzymes for improved organic synthesis.

Hult K, Berglund P.

Curr Opin Biotechnol. 2003 Aug;14(4):395-400. Review.

PMID:
12943848
12.

X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis.

Morais MC, Zhang G, Zhang W, Olsen DB, Dunaway-Mariano D, Allen KN.

J Biol Chem. 2004 Mar 5;279(10):9353-61. Epub 2003 Dec 10.

14.

Molecular dynamics explorations of active site structure in designed and evolved enzymes.

Osuna S, Jiménez-Osés G, Noey EL, Houk KN.

Acc Chem Res. 2015 Apr 21;48(4):1080-9. doi: 10.1021/ar500452q. Epub 2015 Mar 4.

PMID:
25738880
15.

Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.

Harris JM, McIntosh EM, Muscat GE.

J Mol Biol. 1999 Apr 30;288(2):275-87.

PMID:
10329142
16.

Precision is essential for efficient catalysis in an evolved Kemp eliminase.

Blomberg R, Kries H, Pinkas DM, Mittl PR, Grütter MG, Privett HK, Mayo SL, Hilvert D.

Nature. 2013 Nov 21;503(7476):418-21. doi: 10.1038/nature12623. Epub 2013 Oct 16.

PMID:
24132235
17.

Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase.

Vought V, Ciccone T, Davino MH, Fairbairn L, Lin Y, Cosgrove MS, Adams MJ, Levy HR.

Biochemistry. 2000 Dec 12;39(49):15012-21.

PMID:
11106479
18.

Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential.

Murray JM, Kurtis CR, Tambyrajah W, Saysell CG, Wilmot CM, Parsons MR, Phillips SE, Knowles PF, McPherson MJ.

Biochemistry. 2001 Oct 30;40(43):12808-18.

PMID:
11669617
19.

The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation.

Meriläinen G, Poikela V, Kursula P, Wierenga RK.

Biochemistry. 2009 Nov 24;48(46):11011-25. doi: 10.1021/bi901069h.

PMID:
19842716

Supplemental Content

Support Center