Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 282

1.

Reprogramming towards pluripotency requires AID-dependent DNA demethylation.

Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM.

Nature. 2010 Feb 25;463(7284):1042-7. doi: 10.1038/nature08752.

2.

Activation-induced deaminase-coupled DNA demethylation is not crucial for the generation of induced pluripotent stem cells.

Habib O, Habib G, Do JT, Moon SH, Chung HM.

Stem Cells Dev. 2014 Feb 1;23(3):209-18. doi: 10.1089/scd.2013.0337. Epub 2013 Nov 12.

PMID:
24083501
3.

Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog.

Moon JH, Yun W, Kim J, Hyeon S, Kang PJ, Park G, Kim A, Oh S, Whang KY, Kim DW, Yoon BS, You S.

Biochem Biophys Res Commun. 2013 Feb 15;431(3):444-9. doi: 10.1016/j.bbrc.2012.12.149. Epub 2013 Jan 16.

PMID:
23333380
4.

Generation and characterization of induced pluripotent stem cells from Aid-deficient mice.

Shimamoto R, Amano N, Ichisaka T, Watanabe A, Yamanaka S, Okita K.

PLoS One. 2014 Apr 9;9(4):e94735. doi: 10.1371/journal.pone.0094735. eCollection 2014. Erratum in: PLoS One. 2015;10(3):e0119209.

5.

Tbx3 improves the germ-line competency of induced pluripotent stem cells.

Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, Lim SL, Cao S, Tay J, Orlov YL, Lufkin T, Ng HH, Tam WL, Lim B.

Nature. 2010 Feb 25;463(7284):1096-100. doi: 10.1038/nature08735. Epub 2010 Feb 7.

6.

Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency.

Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, Carey M, Garcia BA, Plath K.

Nat Cell Biol. 2013 Jul;15(7):872-82. doi: 10.1038/ncb2768. Epub 2013 Jun 9.

7.

Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells.

Hayashi Y, Caboni L, Das D, Yumoto F, Clayton T, Deller MC, Nguyen P, Farr CL, Chiu HJ, Miller MD, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Tomoda K, Conklin BR, Wilson IA, Yamanaka S, Fletterick RJ.

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4666-71. doi: 10.1073/pnas.1502855112. Epub 2015 Mar 30.

9.

The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines.

Okada M, Yoneda Y.

Biochim Biophys Acta. 2011 Feb;1810(2):226-35. doi: 10.1016/j.bbagen.2010.10.004. Epub 2010 Oct 20.

PMID:
20965232
10.

The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.

Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein D, Maza I, Geula S, Viukov S, Holtzman L, Pribluda A, Canaani E, Horn-Saban S, Amit I, Novershtern N, Hanna JH.

Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.

PMID:
22801502
11.

Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2.

Pereira CF, Terranova R, Ryan NK, Santos J, Morris KJ, Cui W, Merkenschlager M, Fisher AG.

PLoS Genet. 2008 Sep 5;4(9):e1000170. doi: 10.1371/journal.pgen.1000170.

12.

Control of ground-state pluripotency by allelic regulation of Nanog.

Miyanari Y, Torres-Padilla ME.

Nature. 2012 Feb 12;483(7390):470-3. doi: 10.1038/nature10807.

PMID:
22327294
13.

Identification of Oct4-activating compounds that enhance reprogramming efficiency.

Li W, Tian E, Chen ZX, Sun G, Ye P, Yang S, Lu D, Xie J, Ho TV, Tsark WM, Wang C, Horne DA, Riggs AD, Yip ML, Shi Y.

Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):20853-8. doi: 10.1073/pnas.1219181110. Epub 2012 Dec 3.

14.

Gata4 blocks somatic cell reprogramming by directly repressing Nanog.

Serrano F, Calatayud CF, Blazquez M, Torres J, Castell JV, Bort R.

Stem Cells. 2013 Jan;31(1):71-82. doi: 10.1002/stem.1272.

15.

Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.

Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M, Reik W.

PLoS Genet. 2008 Jun 27;4(6):e1000116. doi: 10.1371/journal.pgen.1000116.

16.

Derivation of novel human ground state naive pluripotent stem cells.

Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH.

Nature. 2013 Dec 12;504(7479):282-6. doi: 10.1038/nature12745. Epub 2013 Oct 30. Erratum in: Nature. 2015 Apr 30;520(7549):710.

PMID:
24172903
18.

The effects of nuclear reprogramming on mitochondrial DNA replication.

Kelly RD, Sumer H, McKenzie M, Facucho-Oliveira J, Trounce IA, Verma PJ, St John JC.

Stem Cell Rev. 2013 Feb;9(1):1-15. doi: 10.1007/s12015-011-9318-7.

PMID:
21994000
19.

Nanog-independent reprogramming to iPSCs with canonical factors.

Carter AC, Davis-Dusenbery BN, Koszka K, Ichida JK, Eggan K.

Stem Cell Reports. 2014 Jan 31;2(2):119-26. doi: 10.1016/j.stemcr.2013.12.010. eCollection 2014 Feb 11.

20.

Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.

Doege CA, Inoue K, Yamashita T, Rhee DB, Travis S, Fujita R, Guarnieri P, Bhagat G, Vanti WB, Shih A, Levine RL, Nik S, Chen EI, Abeliovich A.

Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.

Supplemental Content

Support Center