Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Modeling conduction in host-graft interactions between stem cell grafts and cardiomyocytes.

Chen MQ, Yu J, Whittington RH, Wu JC, Kovacs GT, Giovangrandi L.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6014-7. doi: 10.1109/IEMBS.2009.5334024.

PMID:
19964687
2.

Conduction analysis in mixed cardiomyocytes-fibroblasts cultures using microelectrode arrays.

Roy S, Chen MQ, Kovacs GT, Giovangrandi L.

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4250-3. doi: 10.1109/IEMBS.2009.5333605.

PMID:
19964347
3.

A device for separated and reversible co-culture of cardiomyocytes.

Chen MQ, Whittington RH, Day PW, Kobilka BK, Giovangrandi L, Kovacs GT.

Biotechnol Prog. 2010 Jul-Aug;26(4):1164-71. doi: 10.1002/btpr.431.

4.

In vivo assessment of the electrophysiological integration and arrhythmogenic risk of myocardial cell transplantation strategies.

Gepstein L, Ding C, Rahmutula D, Wilson EE, Yankelson L, Caspi O, Gepstein A, Huber I, Olgin JE.

Stem Cells. 2010 Dec;28(12):2151-61. doi: 10.1002/stem.545. Erratum in: Stem Cells. 2011 Sep;29(9):1475. Rehemedula, Dolkun [corrected to Rahmutula, Dolkun].

5.

Physiological differences between transplanted and host tissue cause functional decoupling after in vitro transplantation of human embryonic stem cell-derived cardiomyocytes.

Pillekamp F, Halbach M, Reppel M, Pfannkuche K, Nazzal R, Nguemo F, Matzkies M, Rubenchyk O, Hannes T, Khalil M, Bloch W, Sreeram N, Brockmeier K, Hescheler J.

Cell Physiol Biochem. 2009;23(1-3):65-74. doi: 10.1159/000204093.

6.

Electrophysiological maturation and integration of murine fetal cardiomyocytes after transplantation.

Halbach M, Pfannkuche K, Pillekamp F, Ziomka A, Hannes T, Reppel M, Hescheler J, Müller-Ehmsen J.

Circ Res. 2007 Aug 31;101(5):484-92.

7.

[Electrophysiological properties of stem cells].

Ravens U.

Herz. 2006 Apr;31(2):123-6. Review. German.

PMID:
16738835
8.

Human cord blood CD34+ progenitor cells acquire functional cardiac properties through a cell fusion process.

Avitabile D, Crespi A, Brioschi C, Parente V, Toietta G, Devanna P, Baruscotti M, Truffa S, Scavone A, Rusconi F, Biondi A, D'Alessandra Y, Vigna E, Difrancesco D, Pesce M, Capogrossi MC, Barbuti A.

Am J Physiol Heart Circ Physiol. 2011 May;300(5):H1875-84. doi: 10.1152/ajpheart.00523.2010.

9.

Characterisation of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis.

Chen MQ, Wong J, Kuhl E, Giovangrandi L, Kovacs GT.

Comput Methods Biomech Biomed Engin. 2013;16(2):185-97. doi: 10.1080/10255842.2011.615310.

PMID:
21970595
10.

Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

Aratyn-Schaus Y, Pasqualini FS, Yuan H, McCain ML, Ye GJ, Sheehy SP, Campbell PH, Parker KK.

J Cell Biol. 2016 Feb 15;212(4):389-97. doi: 10.1083/jcb.201508026.

11.

Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L.

Nat Biotechnol. 2004 Oct;22(10):1282-9.

PMID:
15448703
12.

Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts.

Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA.

Nature. 2012 Sep 13;489(7415):322-5. doi: 10.1038/nature11317.

13.

Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures.

Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AA, van der Laarse A, Ypey DL, Atsma DE.

Circ Res. 2008 Jul 18;103(2):167-76. doi: 10.1161/CIRCRESAHA.108.176131.

14.

Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo.

Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S.

Circ Res. 2006 Mar 17;98(5):705-12.

15.

Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin.

Gaudesius G, Miragoli M, Thomas SP, Rohr S.

Circ Res. 2003 Sep 5;93(5):421-8.

16.

Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

Ramkisoensing AA, Pijnappels DA, Askar SF, Passier R, Swildens J, Goumans MJ, Schutte CI, de Vries AA, Scherjon S, Mummery CL, Schalij MJ, Atsma DE.

PLoS One. 2011;6(9):e24164. doi: 10.1371/journal.pone.0024164.

17.

Molecular and phenotypic analyses of human embryonic stem cell-derived cardiomyocytes: opportunities and challenges for clinical translation.

Goh G, Self T, Barbadillo Muñoz MD, Hall IP, Young L, Denning C.

Thromb Haemost. 2005 Oct;94(4):728-37. Review.

PMID:
16270624
18.

Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment.

Formigli L, Francini F, Tani A, Squecco R, Nosi D, Polidori L, Nistri S, Chiappini L, Cesati V, Pacini A, Perna AM, Orlandini GE, Zecchi Orlandini S, Bani D.

Am J Physiol Cell Physiol. 2005 Apr;288(4):C795-804.

19.

Generation, characterization, and potential therapeutic applications of cardiomyocytes from various stem cells.

Liu J, Zhang Z, Liu Y, Guo C, Gong Y, Yang S, Ma M, Li Z, Gao WQ, He Z.

Stem Cells Dev. 2012 Aug 10;21(12):2095-110. doi: 10.1089/scd.2012.0031.

PMID:
22428725
20.

Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells.

Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L.

Circulation. 2003 Jun 3;107(21):2733-40.

Items per page

Supplemental Content

Support Center