Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 374


A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.

Arita A, Zhou X, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz A, Klein CB, Dai W, Begley TJ, Costa M.

BMC Genomics. 2009 Nov 15;10:524. doi: 10.1186/1471-2164-10-524.


A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity.

Zhou X, Arita A, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz AD, Klein CB, Dai W, Begley TJ, Costa M.

Genomics. 2009 Nov;94(5):294-307. doi: 10.1016/j.ygeno.2009.07.003. Epub 2009 Jul 22.


Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.

Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD.

Toxicol Sci. 2008 Jan;101(1):140-51. Epub 2007 Sep 4. Erratum in: Toxicol Sci. 2008 Mar;102(1):205.


The endosomal sorting complex required for transport (ESCRT) is required for the sensitivity of yeast cells to nickel ions in Saccharomyces cerevisiae.

Luo C, Cao C, Jiang L.

FEMS Yeast Res. 2016 May;16(3). pii: fow028. doi: 10.1093/femsyr/fow028. Epub 2016 Mar 17.


Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast.

Ruotolo R, Marchini G, Ottonello S.

Genome Biol. 2008 Apr 7;9(4):R67. doi: 10.1186/gb-2008-9-4-r67.


Genome-scale genetic screen of lead ion-sensitive gene deletion mutations in Saccharomyces cerevisiae.

Du J, Cao C, Jiang L.

Gene. 2015 Jun 1;563(2):155-9. doi: 10.1016/j.gene.2015.03.018. Epub 2015 Mar 13.


Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.

van Bakel H, Strengman E, Wijmenga C, Holstege FC.

Physiol Genomics. 2005 Aug 11;22(3):356-67. Epub 2005 May 10.


The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity.

Hwang GW, Murai Y, Takahashi T, Naganuma A.

Sci Rep. 2014 Jul 30;4:5888. doi: 10.1038/srep05888.


Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI.

Physiol Genomics. 2003 Dec 16;16(1):107-18.


Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance.

Lettner T, Zeidler U, Gimona M, Hauser M, Breitenbach M, Bito A.

PLoS One. 2010 Aug 5;5(8):e11993. doi: 10.1371/journal.pone.0011993.


Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae.

Bonangelino CJ, Chavez EM, Bonifacino JS.

Mol Biol Cell. 2002 Jul;13(7):2486-501.


High-resolution genome-wide scan of genes, gene-networks and cellular systems impacting the yeast ionome.

Yu D, Danku JM, Baxter I, Kim S, Vatamaniuk OK, Vitek O, Ouzzani M, Salt DE.

BMC Genomics. 2012 Nov 14;13:623. doi: 10.1186/1471-2164-13-623.


High throughput screening identifies modulators of histone deacetylase inhibitors.

Gaupel AC, Begley T, Tenniswood M.

BMC Genomics. 2014 Jun 26;15:528. doi: 10.1186/1471-2164-15-528.


A second iron-regulatory system in yeast independent of Aft1p.

Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR.

Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7.


Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae.

Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B.

Mol Cell Biol. 2007 Apr;27(8):3065-86. Epub 2007 Feb 16.


A mitochondrial-vacuolar signaling pathway in yeast that affects iron and copper metabolism.

Li L, Kaplan J.

J Biol Chem. 2004 Aug 6;279(32):33653-61. Epub 2004 May 25.

Supplemental Content

Support Center