Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

Morphing methods to parameterize specimen-specific finite element model geometries.

Sigal IA, Yang H, Roberts MD, Downs JC.

J Biomech. 2010 Jan 19;43(2):254-62. doi: 10.1016/j.jbiomech.2009.08.036. Epub 2009 Oct 29.

2.

Mesh-morphing algorithms for specimen-specific finite element modeling.

Sigal IA, Hardisty MR, Whyne CM.

J Biomech. 2008;41(7):1381-9. doi: 10.1016/j.jbiomech.2008.02.019. Epub 2008 Apr 7.

PMID:
18397789
3.

Mesh morphing and response surface analysis: quantifying sensitivity of vertebral mechanical behavior.

Sigal IA, Whyne CM.

Ann Biomed Eng. 2010 Jan;38(1):41-56. doi: 10.1007/s10439-009-9821-z. Epub 2009 Oct 27.

PMID:
19859809
4.

Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.

Grassi L, Hraiech N, Schileo E, Ansaloni M, Rochette M, Viceconti M.

Med Eng Phys. 2011 Jan;33(1):112-20. doi: 10.1016/j.medengphy.2010.09.014. Epub 2010 Oct 30.

PMID:
21036655
5.

Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.

Park G, Kim T, Forman J, Panzer MB, Crandall JR.

Comput Methods Biomech Biomed Engin. 2017 Aug;20(11):1151-1166. doi: 10.1080/10255842.2017.1340459. Epub 2017 Jun 20.

PMID:
28632407
6.
7.

Validation of a parametric finite element human femur model.

Klein KF, Hu J, Reed MP, Schneider LW, Rupp JD.

Traffic Inj Prev. 2017 May 19;18(4):420-426. doi: 10.1080/15389588.2016.1269172. Epub 2017 Jan 17.

PMID:
28095035
8.

Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

Salo Z, Beek M, Wright D, Whyne CM.

J Biomech. 2015 Apr 13;48(6):1125-32. doi: 10.1016/j.jbiomech.2015.01.013. Epub 2015 Jan 21.

PMID:
25680299
9.

Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

O'Reilly MA, Whyne CM.

Spine (Phila Pa 1976). 2008 Aug 1;33(17):1876-81. doi: 10.1097/BRS.0b013e31817d9ce5.

PMID:
18670341
10.

Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element modeling.

McHenry CR, Clausen PD, Daniel WJ, Meers MB, Pendharkar A.

Anat Rec A Discov Mol Cell Evol Biol. 2006 Aug;288(8):827-49.

11.

Automated finite element analysis of excised human femora based on precision -QCT.

Merz B, Niederer P, Müller R, Rüegsegger P.

J Biomech Eng. 1996 Aug;118(3):387-90.

PMID:
8872261
12.

Geometric modeling of living tissue for subject-specific finite element analysis.

Tada M, Yoshida H, Mochimaru M.

Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6639-42.

PMID:
17959473
13.

Development, validation, and application of a parametric pediatric head finite element model for impact simulations.

Li Z, Hu J, Reed MP, Rupp JD, Hoff CN, Zhang J, Cheng B.

Ann Biomed Eng. 2011 Dec;39(12):2984-97. doi: 10.1007/s10439-011-0409-z. Epub 2011 Sep 24. Erratum in: Ann Biomed Eng. 2013 Jan;41(1):215-20.

PMID:
21947736
14.

The Use of Finite Element Analysis to Enhance Research and Clinical Practice in Orthopedics.

Pfeiffer FM.

J Knee Surg. 2016 Feb;29(2):149-58. doi: 10.1055/s-0035-1570114. Epub 2016 Jan 8. Review.

PMID:
26745731
15.

Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

Salo Z, Beek M, Whyne CM.

Int J Numer Method Biomed Eng. 2012 Aug;28(8):904-13. doi: 10.1002/cnm.2468. Epub 2012 Feb 29.

PMID:
25099570
16.

The optic nerve head as a biomechanical structure: initial finite element modeling.

Bellezza AJ, Hart RT, Burgoyne CF.

Invest Ophthalmol Vis Sci. 2000 Sep;41(10):2991-3000.

PMID:
10967056
18.

Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties.

Sigal IA, Flanagan JG, Tertinegg I, Ethier CR.

Biomech Model Mechanobiol. 2009 Apr;8(2):99-109. doi: 10.1007/s10237-008-0119-0. Epub 2008 Feb 27.

PMID:
18301933
19.

Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.

Yosibash Z, Tal D, Trabelsi N.

Philos Trans A Math Phys Eng Sci. 2010 Jun 13;368(1920):2707-23. doi: 10.1098/rsta.2010.0074.

20.

Supplemental Content

Support Center