Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88


Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation.

Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T, Reh D, Andersen P, Gross N, Olson S, Deng C, Lu SL, Wang XJ.

J Clin Invest. 2009 Nov;119(11):3408-19. doi: 10.1172/JCI38854. Epub 2009 Oct 19.


Smad4: gatekeeper gene in head and neck squamous cell carcinoma.

Korc M.

J Clin Invest. 2009 Nov;119(11):3208-11. doi: 10.1172/JCI41230. Epub 2009 Oct 19.


Decreased SMAD4 expression is associated with induction of epithelial-to-mesenchymal transition and cetuximab resistance in head and neck squamous cell carcinoma.

Cheng H, Fertig EJ, Ozawa H, Hatakeyama H, Howard JD, Perez J, Considine M, Thakar M, Ranaweera R, Krigsfeld G, Chung CH.

Cancer Biol Ther. 2015;16(8):1252-8. doi: 10.1080/15384047.2015.1056418. Epub 2015 Jun 5.


Resveratrol selectively induces DNA Damage, independent of Smad4 expression, in its efficacy against human head and neck squamous cell carcinoma.

Tyagi A, Gu M, Takahata T, Frederick B, Agarwal C, Siriwardana S, Agarwal R, Sclafani RA.

Clin Cancer Res. 2011 Aug 15;17(16):5402-11. doi: 10.1158/1078-0432.CCR-11-1072. Epub 2011 Jun 24.


Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.

Báez A, Cantor A, Fonseca S, Marcos-Martinez M, Mathews LA, Muro-Cacho CA, Muñoz-Antonia T.

Clin Cancer Res. 2005 May 1;11(9):3191-7.


Cytoplasmic DRAK1 overexpressed in head and neck cancers inhibits TGF-β1 tumor suppressor activity by binding to Smad3 to interrupt its complex formation with Smad4.

Park Y, Kim W, Lee JM, Park J, Cho JK, Pang K, Lee J, Kim D, Park SW, Yang KM, Kim SJ.

Oncogene. 2015 Sep 24;34(39):5037-45. doi: 10.1038/onc.2014.423. Epub 2014 Dec 22.


Defects in the Fanconi Anemia Pathway and Chromatid Cohesion in Head and Neck Cancer.

Stoepker C, Ameziane N, van der Lelij P, Kooi IE, Oostra AB, Rooimans MA, van Mil SE, Brink A, Dietrich R, Balk JA, Ylstra B, Joenje H, Feller SM, Brakenhoff RH.

Cancer Res. 2015 Sep 1;75(17):3543-53. doi: 10.1158/0008-5472.CAN-15-0528. Epub 2015 Jun 29.


Loss of TGF-β signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation.

Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB.

Oncogene. 2012 Jul 12;31(28):3322-32. doi: 10.1038/onc.2011.494. Epub 2011 Oct 31.


Downregulation of RAD17 in head and neck cancer.

Zhao M, Begum S, Ha PK, Westra W, Califano J.

Head Neck. 2008 Jan;30(1):35-42.


Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis.

Xie W, Bharathy S, Kim D, Haffty BG, Rimm DL, Reiss M.

Oncol Res. 2003;14(2):61-73.


Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance.

Hess J, Unger K, Orth M, Schötz U, Schüttrumpf L, Zangen V, Gimenez-Aznar I, Michna A, Schneider L, Stamp R, Selmansberger M, Braselmann H, Hieber L, Drexler GA, Kuger S, Klein D, Jendrossek V, Friedl AA, Belka C, Zitzelsberger H, Lauber K.

Cancer Lett. 2017 Feb 1;386:87-99. doi: 10.1016/j.canlet.2016.11.014. Epub 2016 Nov 17.


Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling.

Romick-Rosendale LE, Hoskins EE, Privette Vinnedge LM, Foglesong GD, Brusadelli MG, Potter SS, Komurov K, Brugmann SA, Lambert PF, Kimple RJ, Virts EL, Hanenberg H, Gillison ML, Wells SI.

Clin Cancer Res. 2016 Apr 15;22(8):2062-73. doi: 10.1158/1078-0432.CCR-15-2209. Epub 2015 Nov 24.


Dual disruption of DNA repair and telomere maintenance for the treatment of head and neck cancer.

Lajud SA, Nagda DA, Yamashita T, Zheng J, Tanaka N, Abuzeid WM, Civantos A, Bezpalko O, O'Malley BW Jr, Li D.

Clin Cancer Res. 2014 Dec 15;20(24):6465-78. doi: 10.1158/1078-0432.CCR-14-0176. Epub 2014 Oct 16.


Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer.

Papadimitrakopoulou VA, Oh Y, El-Naggar A, Izzo J, Clayman G, Mao L.

Clin Cancer Res. 1998 Mar;4(3):539-44.


microRNA-107 functions as a candidate tumor-suppressor gene in head and neck squamous cell carcinoma by downregulation of protein kinase Cɛ.

Datta J, Smith A, Lang JC, Islam M, Dutt D, Teknos TN, Pan Q.

Oncogene. 2012 Sep 6;31(36):4045-53. doi: 10.1038/onc.2011.565. Epub 2011 Dec 12.


Identification of mutations in the PYRIN-containing NLR genes (NLRP) in Head and Neck Squamous Cell Carcinoma.

Lei Y, Lui VW, Grandis JR, Egloff AM.

PLoS One. 2014 Jan 21;9(1):e85619. doi: 10.1371/journal.pone.0085619. eCollection 2014.


The FA/BRCA Pathway Identified as the Major Predictor of Cisplatin Response in Head and Neck Cancer by Functional Genomics.

Martens-de Kemp SR, Brink A, van der Meulen IH, de Menezes RX, Te Beest DE, Leemans CR, van Beusechem VW, Braakhuis BJ, Brakenhoff RH.

Mol Cancer Ther. 2017 Mar;16(3):540-550. doi: 10.1158/1535-7163.MCT-16-0457. Epub 2016 Dec 15.


Loss of SOX2 expression induces cell motility via vimentin up-regulation and is an unfavorable risk factor for survival of head and neck squamous cell carcinoma.

Bayo P, Jou A, Stenzinger A, Shao C, Gross M, Jensen A, Grabe N, Mende CH, Rados PV, Debus J, Weichert W, Plinkert PK, Lichter P, Freier K, Hess J.

Mol Oncol. 2015 Oct;9(8):1704-19. doi: 10.1016/j.molonc.2015.05.006. Epub 2015 May 20.

Supplemental Content

Support Center