Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.
2.

Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI.

Johnson PJ, Tatara A, McCreedy DA, Shiu A, Sakiyama-Elbert SE.

Soft Matter. 2010 Oct 21;6(20):5127-5137.

3.

The effect of controlled growth factor delivery on embryonic stem cell differentiation inside fibrin scaffolds.

Willerth SM, Rader A, Sakiyama-Elbert SE.

Stem Cell Res. 2008 Sep;1(3):205-18. doi: 10.1016/j.scr.2008.05.006. Epub 2008 Jun 10. Erratum in: Stem Cell Res. 2009 May;2(3):231-6.

4.

Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury.

Johnson PJ, Parker SR, Sakiyama-Elbert SE.

Biotechnol Bioeng. 2009 Dec 15;104(6):1207-14. doi: 10.1002/bit.22476.

5.

The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds.

Willerth SM, Faxel TE, Gottlieb DI, Sakiyama-Elbert SE.

Stem Cells. 2007 Sep;25(9):2235-44. Epub 2007 Jun 21.

6.
7.

Effect of controlled delivery of neurotrophin-3 from fibrin on spinal cord injury in a long term model.

Taylor SJ, Sakiyama-Elbert SE.

J Control Release. 2006 Nov 28;116(2):204-10. Epub 2006 Jul 8.

8.

Transplantation of adult rat spinal cord stem/progenitor cells for spinal cord injury.

Parr AM, Kulbatski I, Tator CH.

J Neurotrauma. 2007 May;24(5):835-45.

PMID:
17518538
9.

Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury.

Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE.

Acta Biomater. 2015 Dec;28:23-32. doi: 10.1016/j.actbio.2015.09.018. Epub 2015 Sep 15.

10.

Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.

Zhang J, Lu X, Feng G, Gu Z, Sun Y, Bao G, Xu G, Lu Y, Chen J, Xu L, Feng X, Cui Z.

Cell Tissue Res. 2016 Oct;366(1):129-42. doi: 10.1007/s00441-016-2402-1. Epub 2016 May 5.

PMID:
27147262
11.
12.

The effects of controlled release of neurotrophin-3 from PCLA scaffolds on the survival and neuronal differentiation of transplanted neural stem cells in a rat spinal cord injury model.

Tang S, Liao X, Shi B, Qu Y, Huang Z, Lin Q, Guo X, Pei F.

PLoS One. 2014 Sep 12;9(9):e107517. doi: 10.1371/journal.pone.0107517. eCollection 2014.

13.

Effects of glial transplantation on functional recovery following acute spinal cord injury.

Lee KH, Yoon DH, Park YG, Lee BH.

J Neurotrauma. 2005 May;22(5):575-89.

PMID:
15892602
14.

Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.

Lu P, Graham L, Wang Y, Wu D, Tuszynski M.

J Vis Exp. 2014 Jul 27;(89):e50641. doi: 10.3791/50641.

15.

Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury.

Watanabe K, Nakamura M, Iwanami A, Fujita Y, Kanemura Y, Toyama Y, Okano H.

Dev Neurosci. 2004 Mar-Aug;26(2-4):275-87.

PMID:
15711067
16.

Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats.

Kim H, Zahir T, Tator CH, Shoichet MS.

PLoS One. 2011;6(6):e21744. doi: 10.1371/journal.pone.0021744. Epub 2011 Jun 30.

17.

Engineering personalized neural tissue by combining induced pluripotent stem cells with fibrin scaffolds.

Montgomery A, Wong A, Gabers N, Willerth SM.

Biomater Sci. 2015 Feb;3(2):401-13. doi: 10.1039/c4bm00299g. Epub 2014 Oct 16.

PMID:
26218131
18.

Effects of human neural stem cell transplantation in canine spinal cord hemisection.

Lee SH, Chung YN, Kim YH, Kim YJ, Park JP, Kwon DK, Kwon OS, Heo JH, Kim YH, Ryu S, Kang HJ, Paek SH, Wang KC, Kim SU, Yoon BW.

Neurol Res. 2009 Nov;31(9):996-1002. doi: 10.1179/174313209X385626. Epub 2009 Jan 9.

PMID:
19138477
19.

Co-transplantation of schwann cells promotes the survival and differentiation of neural stem cells transplanted into the injured spinal cord.

Zeng YS, Ding Y, Wu LZ, Guo JS, Li HB, Wong WM, Wu WT.

Dev Neurosci. 2005 Jan-Feb;27(1):20-6.

PMID:
15886481
20.

Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.

Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS.

Biomaterials. 2013 May;34(15):3775-83. doi: 10.1016/j.biomaterials.2013.02.002. Epub 2013 Mar 7.

PMID:
23465486

Supplemental Content

Support Center