Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.
2.

The γ-gliadin-like γ-prolamin genes in the tribe Triticeae.

Qi PF, Le CX, Wang Z, Liu YB, Chen Q, Wei ZZ, Xu BJ, Wei ZY, Dai SF, Wei YM, Zheng YL.

J Genet. 2014 Apr;93(1):35-41.

3.
4.

Separation and identification of rice prolamins by two-dimensional gel electrophoresis and amino acid sequencing.

Shigemitsu T, Saito Y, Morita S, Satoh S, Masumura T.

Biosci Biotechnol Biochem. 2012;76(3):594-7.

5.

The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes.

Zhou L, Huang B, Meng X, Wang G, Wang F, Xu Z, Song R.

Plant Mol Biol. 2010 Dec;74(6):631-43. doi: 10.1007/s11103-010-9705-5.

PMID:
20938800
6.

Structural classification of small, disulfide-rich protein domains.

Cheek S, Krishna SS, Grishin NV.

J Mol Biol. 2006 May 26;359(1):215-37.

PMID:
16618491
7.

Role of non-prolamin proteins and low molecular weight redox agents in protein folding and polymerization in wheat grains and influence on baking quality parameters.

Osipova SV, Permyakova MD, Permyakov AV.

J Agric Food Chem. 2012 Dec 12;60(49):12065-73. doi: 10.1021/jf303513m. Review.

PMID:
23170897
8.

Considerations on the folding topology and evolutionary origin of cadherin domains.

Shapiro L, Kwong PD, Fannon AM, Colman DR, Hendrickson WA.

Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6793-7.

9.

Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract.

Mills EN, Jenkins JA, Alcocer MJ, Shewry PR.

Crit Rev Food Sci Nutr. 2004;44(5):379-407. Review.

PMID:
15540651
10.

Polypeptide compositions and NH2-terminal amino acid sequences of proteins in foxtail and proso millets.

Kohama K, Nagasawa T, Nishizawa N.

Biosci Biotechnol Biochem. 1999 Nov;63(11):1921-6.

11.

Unusual features of cereal seed protein structure and evolution.

Kreis M, Shewry PR.

Bioessays. 1989 Jun;10(6):201-7. Review.

PMID:
2662966
12.

Cloning and characterization of a cDNA encoding a rice 13 kDa prolamin.

Masumura T, Hibino T, Kidzu K, Mitsukawa N, Tanaka K, Fujii S.

Mol Gen Genet. 1990 Mar;221(1):1-7.

PMID:
2139168
13.

Cereal prolamin evolution and homology revealed by sequence analysis.

Bietz JA.

Biochem Genet. 1982 Dec;20(11-12):1039-53.

PMID:
7165690
14.

Protein fold irregularities that hinder sequence analysis.

Russell RB, Ponting CP.

Curr Opin Struct Biol. 1998 Jun;8(3):364-71. Review.

PMID:
9666333
15.

Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria.

Thakurta PG, Biswas S, Chakrabarti C, Sundd M, Jagannadham MV, Dattagupta JK.

Biochemistry. 2004 Feb 17;43(6):1532-40.

PMID:
14769029
16.

Identification of the region of rice 13 kDa prolamin essential for the formation of ER-derived protein bodies using a heterologous expression system.

Masumura T, Shigemitsu T, Morita S, Satoh S.

Biosci Biotechnol Biochem. 2015;79(4):566-73. doi: 10.1080/09168451.2014.991684.

PMID:
25522807
17.
18.

cDNA cloning and gene expression of the major prolamins of rice.

Shyur LF, Wen TN, Chen CS.

Plant Mol Biol. 1992 Oct;20(2):323-6.

PMID:
1391776
19.

Molecular cloning and characterization of a cysteine-rich 16.6-kDa prolamin in rice seeds.

Mitsukawa N, Konishi R, Uchiki M, Masumura T, Tanaka K.

Biosci Biotechnol Biochem. 1999 Nov;63(11):1851-8.

20.

Structure prediction, evolution and ligand interaction of CHASE domain.

Pas J, von Grotthuss M, Wyrwicz LS, Rychlewski L, Barciszewski J.

FEBS Lett. 2004 Oct 22;576(3):287-90.

Items per page

Supplemental Content

Support Center